(北师大版)湖北省潜江市七年级数学下册期中试卷及答案一、选择题(30分)1、下图中是对顶角的是()。2、如果两个角的角平分线互相垂直,则这两个角的关系是()。A相等 B互补 C互余 D相等或互余3、直线l上有A、B、C三点,直线l外有一点P,若PA=5cm,PB=3cm,PC=2cm,那么点P到直线l的距离()。A等于2cmB等于3cm C等于5cmD不大于2cm4、如图,平行直线AB、CD与相交直线EF、GH相交,图中相等的内错角共有()对。A2对B4对C6对 D8对5、平面内三条直线的交点个数可能有()个。 A1个或3个B2个或3个C1个或2个或3个D0个或1个或2个或3个6、下列各数中:0.3,π,38,2223,0.1234567891011……,无理数的个数有()个。A1 B2C3D47、飞机在某高空因任务需要向左偏转300,飞行一段距离完成任务后,要回到与原航向平行的轨道上,需要()。 A向右偏转1500 B向右偏转600 C向右偏转300D向左偏转3008、若点A2,2xx是x轴上的点,则点A关于y轴的对称点是()。A(4,0) B(0,4) C(-4,0)D(0,-4)9、如图,AB∥EF∥CD,∠ABC=460,∠CEF=1600,则∠BCE等于( )。ABCDABCDFHGE A260B160 C230 D200 10、若点P(a、b)到两坐标轴的距离相等,且ab=4,则点P的坐标为( )。A(2,2)B(-2,-2)C(2,2)或(-2,2) D(2,2)或(-2,-2)二、填空题(30分)来源:http://www.bcjy123.com/tiku/11、若a是16的算术平方根,b是327的算术平方根,则ba的值是。12、实数x、y满足155xxy,则xy的平方根是。13、在平面直角坐标系中,点(-3,2)向右平移4个单位,再向下平移3个单位,平移后的点的坐标是。14、定义一种新运算a※b2222baba,则5※(-12)= 。15、将7的小数部分记作m,17的小数部分记作n,则m-n=。16、数轴上A、B两点分别表示2,3,则点A关于点B的对称点C表示的数是。17、若点)1,1(baM在第一象限,则)1,1(ba在第象限。18、已知),(,03)5(2baPba则的坐标是。19、如图,若∠A=∠ABC,则∥( )若AB∥CE,则=∠E( )20、已知点A(0,5)和点B(m,0),且直线AB与坐标轴围成的三角形的面积是10,则m的值是 。三、解答题(60分)21、计算(每小题5分,共10分)。ABEDCABDEFC⑴326449)5(⑵5235222、利用平方根和立方根的定义,求出x的值(每小题5分,共10分)。⑴22)2()3(4y⑵81)1(3x23、如图,已知∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,那么EC与DF有什么位置关系,并说明你的理由。(10分)24、比较下列实数的大小(每小题4分,共8分)来源:http://www.bcjy123.com/tiku/⑴53 与 35 ⑵216 与 235 25、平面内两条直线AB、CD互相平行,在两直线外取一点P(如图),请写出ABCFDEPDCABABCDBCCDAPPABPD各图形中∠A,∠C,∠P的关系,并选取其中一个给出证明。(10分)(1) (2) (3) (4)26、一副三角尺如图放置,直角顶点重合,
上传时间:2023-04-30 页数:5
467人已阅读
(5星级)
中考总复习:函数综合—巩固练习(基础)【巩固练习】一、选择题1.(2015•武汉模拟)二次函数y=kx2﹣6x+3的图象与x轴有交点,则k的取值范围是() A.k<3B.k<3且k≠0C.k≤3D.k≤3且k≠02.如图,直线和双曲线 (k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别是C、D、E,连接OA、OB、OP,设△AOC面积是S1、△BOD面积是S2、△POE面积是S3、则()A. S1<S2<S3 B.S1>S2>S3 C.S1=S2>S3 D.S1=S2<S3 3.小华的爷爷每天坚持体育锻炼,某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家。下面能反映当天小华的爷爷离家的距离y与时间x的函数关系的大致图象是()4.已知一次函数的图象如图所示,那么a的取值范围是()A.a>1 B.a<1 C.a>0 D.a<05.下列函数中,当x>0时,y值随x值增大而减小的是()A.y=x2B.y=x-1C.y=xD.y=6.在平面直角坐标系中,将抛物线y=x2+2x+3绕着它与y轴的交点旋转180°,所得抛物线的解析式是()A.y=-(x+1)2+2 B.y=-(x-1)2+4 C.y=-(x-1)2+2 D.y=-(x+1)2+4二、填空题17.(2016•贵阳模拟)如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为.8.在对物体做功一定的情况下,力F(牛)与此物体在力的方向上移动的距离s(米)成反比例函数关系,其图象如图所示,P(5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是________米.9.已知近视眼镜的度数y(度)与镜片焦距x(m)成反比例关系,已知400度近视眼镜镜片的焦距为0.25m,则y与x的函数关系式为________.10.如图所示,点A是双曲线在第二象限的分支上的任意一点,点B,C,D分别是A关于x轴、原点、y轴的对称点,则四边形ABCD的面积是________.第8题第10题 第11题11.如图,直线,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再经过A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去,点A5的坐标为(________,________).12.已知二次函数(a为常数),当a取不同的值时,其图象构成一个抛物线系,下图分别是当a=-1,a=0,a=1,a=2时二次函数的图象,它们的顶点在一条直线上,这条直线的解析式是y=_______.三、解答题213.直线交反比例函数的图象于点A,交x轴于点B,点A,B与坐标原点O构成等边三角形,求直线的函数解析式.14.(2014•温州)如图,抛物线y=﹣x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F,已知点A的坐标为(﹣1,0).(1)求该抛物线的解析式及顶点M的坐标.(2)求△EMF与△BNF的面积之比.15.已知如图所示,在平面直角坐标系中,点A在第一象限,点B的坐标为(3,0),OA=2,∠AOB=60°. (1)求点A的坐标;(2)若直线AB交y轴于点C,求△AOC的面积.16.如图所示,等腰三角形ABC以2米/秒的速度沿直线向正方形移动,直到AB与CD重合.设x秒时,三角形与正方形重叠部分的面积为y平方米.(1)写出y与x的关系式;(2)当x=2,3.5时,y分别是多少?(3)当重叠部分的面积是正方形面积的一半时,三角形移动了多长时间?3【答案与解析】一、选择题1.【答案】D;【解析】∵二次函数y=kx2﹣6x+3的图象与x轴有交点,∴方程kx2﹣6x+3=0(k≠0)有实数根,即△=36﹣12k≥0,k≤3,由于是二次函数,故k≠0,则k的取值范围是k≤3且k≠0.故选D.2.【答案】D;【解析】S1=S△AOC=k,S2=S△BOD=k,S3=S△POE>k.所以S1=S2<S3.3.【答案】C;【解析】散步时用时较长,而跑步用时较短,打一会太极拳说明这一时间段离家的距离不变,因而只有C选项符合.4.【答案】A;【解析】由图象可知k>0,即a-1>0,所以a>1.5.【答案】D;【解析】y=分布
上传时间:2023-04-30 页数:7
467人已阅读
(5星级)
二次函数y=a(x-h)2+k(a≠0)的图象与性质—知识讲解(基础)【学习目标】1.会用描点法画出二次函数2()yaxhk(a、h、k常数,a≠0)的图象.掌握抛物线2()yaxhk与2yax图象之间的关系;2.熟练掌握函数2()yaxhk的有关性质,并能用函数2()yaxhk的性质解决一些实际问题;3.经历探索2()yaxhk的图象及性质的过程,体验2()yaxhk与2yax、2yaxk、2()yaxh之间的转化过程,深刻理解数学建模思想及数形结合的思想方法.【要点梳理】要点一、函数与函数的图象与性质1.函数的图象与性质 2.函数的图象与性质要点诠释:二次函数2()+(0yaxhka≠)的图象常与直线、三角形、面积问题结合在一起,借助它的图象与性质.运用数形结合、函数、方程思想解决问题.要点二、二次函数的平移1.平移步骤:⑴ 将抛物线解析式转化成顶点式2yaxhk,确定其顶点坐标hk,;a的符号开口方向顶点坐标对称轴性质0a向上0h,x=hxh时,y随x的增大而增大;xh时,y随x的增大而减小;xh时,y有最小值0.0a向下0h,x=hxh时,y随x的增大而减小;xh时,y随x的增大而增大;xh时,y有最大值0.a的符号开口方向顶点坐标对称轴性质0a向上hk,x=hxh时,y随x的增大而增大;xh时,y随x的增大而减小;xh时,y有最小值k.0a向下hk,x=hxh时,y随x的增大而减小;xh时,y随x的增大而增大;xh时,y有最大值k.1⑵ 保持抛物线2yax的形状不变,将其顶点平移到hk,处,具体平移方法如下: 2.平移规律:在原有函数的基础上h值正右移,负左移;k值正上移,负下移.概括成八个字左加右减,上加下减.要点诠释:⑴cbxaxy2沿y轴平移:向上(下)平移m个单位,cbxaxy2变成mcbxaxy2(或mcbxaxy2)⑵cbxaxy2沿x轴平移:向左(右)平移m个单位,cbxaxy2变成cmxbmxay)()(2(或cmxbmxay)()(2)【典型例题】类型一、二次函数图象及性质1.(2016•潮南区模拟)二次函数y=﹣(x3﹣)2+2的顶点的坐标是,对称轴是 .【思路点拨】根据二次函数顶点式解析式分别解答即可.【答案】(3,2),直线x=3.【解析】二次函数y=﹣(x3﹣)2+2;顶点坐标是(3,2),对称轴是直线x=3.故答案为:(3,2),直线x=3.【总结升华】本题考查了二次函数的性质,熟练掌握利用二次函数顶点式形式求解对称轴和顶点坐标的方法是解题的关键.举一反三:391919练习2】【变式】(2014•荆州)将抛物线y=x26x+5﹣向上平移2个单位长度,再向右平移1个单位长度后,求得到的抛物线解析式.2【答案与解析】解:y=x26x+5=﹣(x3﹣)24﹣,∴抛物线的顶点坐标为(3,﹣4),把点(3,﹣4)向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为(4,﹣2),∴平移后得到的抛物线解析式为y=(x4﹣)22﹣.2.把抛物线向上平移2个单位,再向左平移4个单位,得到抛物线,求b,c的值.【答案与解析】根据题意得,y=(x-4)2-2=x2-8x+14, 所以 【总结升华】把抛物线向上平移2个单位,再向左平移4个单位,得到抛物线,也就意味着把抛物线向下平移2个单位,再向右平移4个单位,得到抛物线.举一反三:391919 练习2】【变式】二次函数21(3)42yx的图象可以看作是二次函数212yx的图象向平移4个单位,再向平移3个单位得到的.【答案】上;右.类型二、二次函数性质的综合应用3.(2014秋•安顺期末)二次函数y1=a(x2﹣)2的图象与直线y2交于A(0,﹣1),B(2,0)两点.(1)确定二次函数与直线AB的解析式.(2)如图,分别确定当y1<y2,y1=y2,y1>y2时,自变量x的取值范围.3【答案与解析】解:(1)把A(0,﹣1)代入y1=a(x2﹣)2,得:﹣1=4a,即a=﹣,∴二次函数解析式为y1=﹣(x2﹣)2=﹣a2+a1﹣;设直线AB解析式为y=kx+b,把A(0,﹣1),B(2,0)代入得:,解得:k=,b=1﹣,则直线AB解析式为y=x1﹣;(2)根据图象得:当y1<y2时,x的范围为x<0或x>2;y1=y2时,x=0或x=2,y1>y2时,0<x<2.【总结升华】可先由待定系数法建立方程组求出两个函数的解析式,然后利用函数图象写出自变量的取值范围.4.如图,抛物线的
上传时间:2023-04-30 页数:5
467人已阅读
(5星级)
与三角形有关的角(提高)巩固练习【巩固练习】一、选择题1.如图所示,一根直尺EF压在三角板30°的角∠BAC上,与两边AC,AB交于M,N.那么∠CME+∠BNF是( )A.150°B.180°C.135°D.不能确定2.若一个三角形的三个内角互不相等,则它的最小角必小于()A.30°B.45°C.60°D.55°3.下列语句中,正确的是( )A.三角形的外角大于任何一个内角B.三角形的外角等于这个三角形的两个内角之和C.三角形的外角中,至少有两个钝角D.三角形的外角中,至少有一个钝角4.如果一个三角形的两个外角之和为270°,那么这个三角形是 ()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定5.(2016春•泰山区期中)具备下列条件的△ABC中,不是直角三角形的是 ()A.∠A+∠B=∠C B.∠A=∠B=∠CC.∠A:∠B:∠C=1:2:3D.∠A=2∠B=3∠C6.(2015春•泰山区期中)如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=()A.70°B.80° C.90° D.100°二、填空题7.在△ABC中,若∠A-2∠B=70°,2∠C-∠B=10°,则∠C=________.8.如图,在△ABC中,∠ABC、∠ACB的平分线相交于点O.(1)若∠A=76°,则∠BOC=________;(2)若∠BOC=120°,则∠A=_______;(3)∠A与∠BOC之间具有的数量关系是_______.19. 已知等腰三角形的一个外角等于100°,则它的底角等于________.10.将一副直角三角板如图所示放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为________.11. (2016•贵港二模)如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线交于点A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,…∠An1﹣BC的平行线与∠An1﹣CD的平分线交于点An,设∠A=θ,则∠An=.12.如图,O是△ABC外一点,OB,OC分别平分△ABC的外角∠CBE,∠BCF.若∠A=n°,则∠BOC= (用含n的代数式表示).三、解答题13.如图,求证:∠A+∠B+∠C+∠D+∠E=180°.14.(2015春•扬州校级期中)如图①,△ABC的角平分线BD、CE相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,过P点作直线MN,分别交AB和AC于点M和N,且MN平行于BC,则有∠MPB+∠NPC=90°﹣∠A.若将直线MN绕点P旋转,(ⅰ)如图③,试探索∠MPB、∠NPC、∠A三者之间的数量关系是否依然成立,并说明理由;2(ⅱ)当直线MN与AB的交点仍在线段AB上,而与AC的交点在AC的延长线上时,如图④,试问(ⅰ)中∠MPB、∠NPC、∠A三者之间的数量关系是否仍然成立?若不成立,请给出∠MPB、∠NPC、∠A三者之间的数量关系,并说明你的理由. 15.如图,在△ABC中,∠ABC的平分线与外角∠ACE的平分线交于点D.试说明12DA.16.如图所示,在△ABC中,∠1=∠2,∠C>∠B,E为AD上一点,且EF⊥BC于F.(1)试探索∠DEF与∠B,∠C的大小关系;(2)如图(2)所示,当点E在AD的延长线上时,其余条件都不变,你在(1)中探索到的结论是否还成立?【答案与解析】一、选择题1. 【答案】A【解析】(1)由∠A=30°,可得∠AMN+∠ANM=180°-30°=150°又∵∠CME=∠AMN,∠BNF=∠ANM,故有∠CME+∠BNF=150°.2. 【答案】C;【解析】假如三角形的最小角不小于60°,则必有大于或等于60°的,因为该三角形三个内角互不相等,所以另外两个非最小角一定大于60°,此时,该三角形的三个内角和必大于180°,这与三角形的内角和定理矛盾,故假设不可能成立,即它的最小角必小于60°.3. 【答案】C ; 【解析】因为三角形的内角中最多有一个钝角,所以外角中最多有一个锐角,即外角中至少有两个钝角.4. 【答案】B;3 【解析】因为三角形的外角和360°,而两个外角的和为270°,所以必有一个外角为90°,所以有一个内有为90°.5. 【答案】D; 6. 【答案】C;【解析】解:∵BP是△ABC中∠ABC的
上传时间:2023-04-30 页数:6
467人已阅读
(5星级)
不等式及其性质(基础)知识讲解【学习目标】1.了解不等式的意义,认识不等式和等式都可以用来刻画现实世界中的数量关系.2. 知道不等式解集的概念并会在数轴上表示解集.3. 理解不等式的三条基本性质,并会简单应用.【要点梳理】要点一、不等式的概念一般地,用<、 >、≤或≥表示大小关系的式子,叫做不等式.用≠表示不等关系的式子也是不等式.要点诠释:(1)不等号<或>表示不等关系,它们具有方向性,不等号的开口所对的数较大.(2)五种不等号的读法及其意义:符号读法意义≠读作不等于它说明两个量之间的关系是不相等的,但不能确定哪个大,哪个小<读作小于表示左边的量比右边的量小>读作大于表示左边的量比右边的量大≤读作小于或等于即不大于,表示左边的量不大于右边的量≥读作大于或等于即不小于,表示左边的量不小于右边的量(3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.要点二、不等式的解及解集1.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.2.不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.要点诠释:不等式的解是具体的未知数的值,不是一个范围不等式的解集是一个集合,是一个范围.其含义:①解集中的每一个数值都能使不等式成立②能够使不等式成立的所有数值都在解集中3.不等式的解集的表示方法(1)用最简的不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式的无限个解.如图所示:1要点诠释:借助数轴可以将不等式的解集直观地表示出来,在应用数轴表示不等式的解集时,要注意两个确定:一是确定边界点,二是确定方向.(1)确定边界点:若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;(2)确定方向:对边界点a而言,x>a或x≥a向右画;对边界点a而言,x<a或x≤a向左画.注意:在表示a的点上画空心圆圈,表示不包括这一点.要点三、不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c.不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或).要点诠释: 不等式的基本性质的掌握注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变.【典型例题】类型一、不等式的概念1.用不等式表示:(1)x与-3的和是负数;(2)x与5的和的28%不大于-6;(3)m除以4的商加上3至多为5.【思路点拨】列不等式时,应抓住大于、不大于、不是、至多、非负数等表示不等关系的关键性词语,进而根据这些关键词的内涵列出不等式.【答案与解析】解:(1)x-3<0;(2)28%(x+5)≤-6;(3)≤5.【总结升华】在不等式及其应用的题目中,经常会出现一些表示不等关系的词语.正确理解这些关键词很重要.如:若x是非负数,则x≥0;若x是非正数,则x≤0;若x大于y,则有x-y>0;若x小于y,则有x-y<0等.举一反三:【变式】(2015春•陕西校级期末)下列式子:①﹣2<0;②2x+3y<0;③x=3;④x+y中,是不等式的个数有()A.1个B.2个C.3个D.4个【答案】B.类型二、不等式的解及解集2.对于不等式4x+7(x-2)>8不是它的解的是()A.5B.4C.3D.22【思路点拨】根据不等式解的定义作答.【答案】D【解析】解:当x=5时,4x+7(x-2)=41>8,当x=4时,4x+7(x-2)=30>8,当x=3时,4x+7(x-2)=19>8,当x=2时,4x+7(x-2)=8.故知x=2不是原不等式的解.【总结升华】不等式的解的定义与方程的解的定义是类似的,其判定方法是相同的.3.不等式
上传时间:2023-04-30 页数:4
467人已阅读
(5星级)
二元一次方程组解法(二)加减法(基础)知识讲解【学习目标】1. 掌握加减消元法解二元一次方程组的方法; 2. 能熟练、正确、灵活掌握代入法和加减法解二元一次方程组;3.会对一些特殊的方程组进行特殊的求解.【要点梳理】要点一、加减消元法解二元一次方程组两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.要点诠释:用加减消元法解二元一次方程组的一般步骤: (1)方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,那么就用适当的数乘方程的两边,使同一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)将这个求得的未知数的值代入原方程组中的任意一个方程中,求出另一个未知数的值并把求得的两个未知数的值用大括号联立起来,就是方程组的解.要点二、选择适当的方法解二元一次方程组解二元一次方程组的基本思想(一般思路)是消元,消元的方法有两种:代入消元和加减消元,通过适当练习做到巧妙选择,快速消元.【典型例题】类型一、加减法解二元一次方程组1. 直接加减:(2016•江宁区二模)已知是二元一次方程组的解,则的值为 .【思路点拨】方程组利用加减消元法即可确定出的值.【答案】3.【解析】解:把代入,得,①+②得:【总结升华】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.先变系数后加减:【思路点拨】注意到方程组中x的系数成2倍关系,可将方程①的两边同乘2,使两个方程中x的系数相等,然后再相减消元.【答案与解析】解:②-①×2,得13y=65.解得y=5.1将y=5代入①,得2x-5×5=-21,解得x=2.所以原方程组的解为.【总结升华】如果两个方程中未知数的系数的绝对值不相等,但某一未知数的系数成整数倍,可将一个方程的系数进行变化,使这个未知数的系数的绝对值相等.举一反三:【变式】(2015•河北模拟)已知关于x,y的二元一次方程组的解满足x﹣y=a,求该方程组的解.【答案】解:,②×2﹣①得,y=a﹣,把y=a﹣代入②得,x=a﹣,则a﹣﹣(a﹣)=a,解得,a=5方程组的解为:.3.建立新方程组后巧加减:解方程组【思路点拨】注意到两个方程中两个未知数的系数的和相等、差互为相反数,所以可将两个方程分别相加、相减,从而得到一个较简单的二元一次方程组.【答案与解析】解:①+②,得7x+7y=7,整理得x+y=1.③②-①,得3x-3y=-15,整理得x-y=-5.④解由③、④组成的方程组得原方程组的解为【总结升华】解方程组时,我们应根据方程组中未知数的系数的特点,通过将两个方程相加或相减,把原方程组转化为更简单的方程组来解.24.先化简再加减:解方程组【思路点拨】方程组中未知数的系数是分数或小数,一般要先化成整数后再消元.【答案与解析】解:①×10,②×6,得③×3-④,得11y=33,解得y=3.将y=3代入③,解得x=4.所以原方程组的解为【总结升华】当二元一次方程组的形式比较复杂时,通常是先通过变形(如去分母、去括号等),将它化为形式简单的方程组,再消元求解.类型二、用适当方法解二元一次方程组5. (1) (2)【思路点拨】观察方程特点选择方法:(1)代入消元法;(2)先化简再加减或代入消元法.【答案与解析】解:(1)由①得③将③代入②得解得:将代入③得∴原方程组的解为:.(2)原方程组可化为:①+②,得,即 ③将③代入①得,代入③得 3∴原方程组的解为:.【总结升华】方程组的解法不唯一,只是有的计算简便,有的繁琐.举一反三:【变式】用两种方法解方程组【答案】解:法Ⅰ:由(1):2y=9-x将其整体代入(2):3x-(9-x)=-1解得x=2∴2y=9-x=7∴原方程组的解为:法Ⅱ:(1)+(2):4x=8,x=2,代入(1):2+2y=9,2y=7,.∴原方程组的解为:.4
上传时间:2023-04-30 页数:4
467人已阅读
(5星级)
三元一次方程组(提高)知识讲解【学习目标】1.理解三元一次方程(或组)的含义;2.会解简单的三元一次方程组;3. 会列三元一次方程组解决有关实际问题.【要点梳理】要点一、三元一次方程及三元一次方程组的概念1.三元一次方程的定义:含有三个未知数,并且含有未知数的项的次数都是1的整式方程.如x+y-z=1,2a-3b+4c=5等都是三元一次方程.要点诠释: (1)三元一次方程的条件:①是整式方程,②含有三个未知数,③含未知数的项的最高次数是1次.(2) 三元一次方程的一般形式:ax+by+cz+d=0,其中a、b、c不为零.2.三元一次方程组的定义:一般地,由几个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组. 要点诠释:(1) 三个方程中不一定每一个方程中都含有三个未知数,只要三个方程共含有三个未知量即可.(2)在实际问题中含有三个未知数,当这三个未知数同时满足三个相等关系时,可以建立三元一次方程组求解.要点二、三元一次方程组的解法解三元一次方程组的一般步骤(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;(2)解这个二元一次方程组,求出两个未知数的值;(3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;(4)解这个一元一次方程,求出最后一个未知数的值;(5)将求得的三个未知数的值用{合写在一起.要点诠释:(1)解三元一次方程组的基本思路是:通过代入或加减消元,把三元化为二元.使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.其思想方法是:(2)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求其较简单的解法.要点三、三元一次方程组的应用列三元一次方程组解应用题的一般步骤:1.弄清题意和题目中的数量关系,用字母(如x,y,z)表示题目中的两个(或三个)未知数; 2.找出能够表达应用题全部含义的相等关系; 3.根据这些相等关系列出需要的代数式,从而列出方程并组成方程组;14.解这个方程组,求出未知数的值;5.写出答案(包括单位名称).要点诠释:(1)解实际应用题必须写答,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去.(2)设、答两步,都要写清单位名称,应注意单位是否统一.(3)一般来说,设几个未知数,就应列出几个方程并组成方程组.【典型例题】类型一、三元一次方程及三元一次方程组的概念1. 下列方程组不是三元一次方程组的是().A.B.C.D. 【思路点拨】根据三元一次方程组的定义来求解,对A、B、C、D四个选项进行一一验证.【答案】B【解析】解:由题意知,含有三个相同的未知数,每个方程中含未知数的项的次数都是1次,并且一共有三个方程,叫做三元一次方程组.A、满足三元一次方程组的定义,故A选项错误;B、x2-4=0,未知量x的次数为2次,∴不是三元一次方程,故B选项正确;C、满足三元一次方程组的定义,故C选项错误;D、满足三元一次方程组的定义,故D选项错误;故选B.【总结升华】三元一次方程组中的方程不一定都是三元一次方程,并且有时需对方程化简后再根据三元一次方程组的定义进行判断.类型二、三元一次方程组的解法2. (2015春•苏州校级期末)若x:y:z=2:7:5,x﹣2y+3z=6,求的值.【思路点拨】根据x:y:z=2:7:5,设x=2k,y=7k,z=5k,代入x﹣2y+3z=6得出方程,求出方程的解,即可求出x、y、z的值,最后代入求出即可.【答案与解析】解:∵x:y:z=2:7:5,∴设x=2k,y=7k,z=5k,代入x﹣2y+3z=6得:2k﹣14k+15k=6,解得:k=2,∴x=4,y=14,z=10,∴==0.18.【总结升华】若某一方程是比例形式,则先引入参数,后消元.举一反三:2【变式】解方程组【答案】解:由①,得3x=2y,即,④由②,得5y=4z,即,⑤把④、⑤代入③,得.解得y=12.⑥把⑥代入④,得x=8,把⑥代入⑤,得z=15.所以原方程组的解为3.已知方程组的解使得代数式x-2y+3z的值等于-10,求a的值.【思路点拨】由题意可知,此方程组中的a是已知数,x、y、z是未知数,先解方程组,求出x,y,z(含有a的代数式),然后把求得的x、y、z代入等式x-2y+3z=-10,可得关于a的一元一次方程,解这个方程,即可求得a的值.【答案与解析】解法一:②-①,得z-x=2a④③+④,得2z=6a,z=3a把z=3a分别代入②和③,得y=2a,x=a.∴.把x=a,y=2a,z=3a代入x-
上传时间:2023-04-30 页数:5
467人已阅读
(5星级)
2021年长春市初中毕业学业水平考试英 语本试卷包括四道大题, 共8页。满分95 分。考试时间为 100 分钟。考试结束后, 将本试卷和答题卡一并交回. 注意事项∶1.答题前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并将条形码准确粘贴在条形码区域内。2. 答题时, 考生务必按照考试要求在答题卡上的指定区域内作答, 在草稿纸。试卷上答题无效. 一、基础知识(共 25 分)I. 在下列各句的空白处填入一个适当的词, 使句子意思完整、语法正确。(5 分) 1. I want to be a teacher like Zhang Guimei when I grow ___________.2. The smart boy can find Beijing easily on the ____________ of China.3. If you borrow books from the library, give ____________ back on time4. Changbai Mountain in Jilin Province is a good place to ____________ fun.5. They came up ___________ a good idea to keep their classroom clean and tidy.Ⅱ. 用括号内所给单词的适当形式填空。(5 分)6. We should speak to the old people ____________ (polite)7. Helen enjoys _____________ (listen) to soft music when she is tired.8. Dont eat too much junk food because its ____________(healthy).9. Shanghai is my fathers favorite city and its his _____________ (five) time to visit it.10. People show thanks to ____________ (nurse) because they take good care of patients.III. 单项选择。(15 分)从每小题所给的四个选项中, 选出一个最佳答案。11. Tom thinks playing ___________basketball is a good way to relax himself.A. aB. anC. theD. /12. We used to buy things in the ____________ but now we usually do it online.A. shopB. museumC. bankD. library13. My cousin keeps two pets. One is a lovely cat and ___________ is a beautiful bird.A. otherB. othersC. the otherD. another14. There __________ two people waiting for you outside now. A. isB. areC. wasD. were15. Bill is running so fast! I _________ believe my eyes.A. needntB. shouldntC. mustntD. cant16. Write down these useful sentences, ________ youll forget them.A. andB. orC. butD. so17. Hi, Mom is __________ than any other film that Ive ever seen.A. popularB. the most popularC. too popularD. more popular18. —Do you often go to Jingyue Park, by car or by bike?—________ I think its good for the environment and our health. A. Yes, I doB. No, I dontC. By bikeD. By car19. Dont be upset. Sometimes challenges can ___________ the best in us.A. b
上传时间:2023-05-09 页数:9
466人已阅读
(5星级)
2021浙江省嘉兴市语文中考真题1.全卷共8页。满分120分, 其中卷面书写3分、考试时间120分钟。2.答题前请仔细阅读答题纸上的注意事项。卷首语:亲爱的同学,为了丰富学习生活,提高运用知识解决问题的能力,嘉舟两地九年级学生开展水文化的理解与传承项目化学习。本次学习分方案设计学习实践成果构筑三个阶段,请你一起参加,期待你的精彩表现哦!1. 方案设计项目化学习活动方案项目名称水文化的理解与传承项目简述本项目引导我们在活动中探究水文化的内涵,加深对水文化的理解,传承文明,创造美好生活核心知识水文化高阶认知调研、系统分析、比较、抽象、推理、问题解决、创见驱动性问题如何做一个水文化的传播者,让生活更美好实践与评价成果与评价个人成果:1.制作评价单,探究水之源,理解水文化。2.阅读《简·爱》《钢铁是怎样炼成的》《傅雷家书》等名著,在我的青春,我的理想为主题的阅读交流会上发言。3.在创造性写作中表达如何做一个水文化的传播者,让生活更美好。公开成果:完成《水——让生活更美好》成果集,宜传水文化。评价的知识和能力:水文化的理解处理信息的能力阅读能力写作能力过程性评价:略项目过程:略项目方案可以从驱动性问题与成果的一致性来评价,请你根据这个原则,评价方案中个人成果的制定是否合理。【答案】示例1:部分合理(部分不合理)。第1点和第3点都与驱动性问题相关,第2点阅读三部名著,以我的青春,我的理想为主题发言,和驱动性问题无关。示例2:不合理。因为个人成果中第2点阅读三部名著,以我的青春,我的理想为主题发言,和驱动性问题无关。【解析】【分析】【详解】本题考查对活动方案的分析。题干要求从驱动性问题与成果的一致性来评价个人成果的制定是否合理。根据驱动性问题如何做一个水文化的传播者,让生活更美好可知,个人成果中制作评价单,探究水之源,理解水文化和在创造性写作中表达如何做一个水文化的传播者,让生活更美好。与驱动性问题相关,因此第1点和第3点合理;第2点阅读《简·爱》《钢铁是怎样炼成的》《傅雷家书》等名著,在我的青春,我的理想为主题的阅读交流会上发言。是以我的青春,我的理想为主题的发言,与驱动性问题无关,以此第2点不合理。学习实践学习实践一:实地走访,探究水源2.嘉兴与舟山同学各自组建了实地考察组和文化审美组,就身边的水文化进行探究。实地考察组同学经过考察后,展示与交流了下列资料。【嘉兴组】展示一:嘉兴运河搏物馆资料河:从水,是无色无味透明的液体:河,表示可以、能够。水可为河,表示可以流动的水才称之为河。河是指像母亲一样养育人们,伴随着人类文明不断进步与发展的水流。海宁市长安闸的三闸两澳系统为宋代运河水利工程,是古代水利史上的一个伟大创举。该系统解决了船只安全进出和运河水资源紧缺这两大问题。鸳鸯湖棹歌清·张燕昌满湖烟雨湿莺声,庭院飞飞散落英。目断长虹睛亦雨,舂来难得是多睛。【注释】①张燕昌:清代嘉兴学者。展示二:采访汇总地点王江泾镇问题1请您介绍一下网船会民俗活动。采访民俗专家:网船会是流行于嘉兴市秀洲区的传统民俗活动,是国家级非物质文化遗产之一。记录举办网船会,旨在传承民俗文化,弘扬王江泾运河古文化。百余年来,网船会在当地已衍变为渔民、船民的节日,主要有祭祀神灵、认祖归宗、祈愿平安等重要文化功能。庙会期间,各地渔民,船民自发表演龙舞、狮舞等祭祀活动和荡湖船、踏白船等原生态民间艺术活动。地点月河、狮子汇问题2请问怎样处理好保护和传承水文化的关系?采访记录市相关部门人员:月河以其水弯曲抱域如月而得名,居民依水而建,古街深巷迁回绵长。修缮时,我们完好保存了鱼骨状巷弄肌理,船桨拂过烟波,摇曳出清风淡雅的水墨画,展现了深厚的水乡古域风情。2020 年月河入围首批省级高品质步行街试点。我们以省级高品质步行街为标准,丰富业态品类,提升整体档次,满足市民对高品质生活的追求。现月河已成为嘉兴的一张靓丽名片。但与月河历史街区仅一路之隔的嘉禾北京城购物广场与周围建筑风貌格格不入,影响了运河的整体黎游开发。怎祥科学利用好大运河,使大运河真正成为延续嘉兴昨天、今天、明天的历史文化长廊,将是嘉兴努力的重要方向。某工程设计者: 1921年中共一大代表从上海转到嘉兴,在狮子汇渡口坐船到南湖续会。从此,狮子汇渡口烙上了红色的印迹。在它及周边环境提升工程中,我们充分尊重历史,利用现有资源,植入更丰富的旅游元素,精心打造城市红色文化特色品牌,进一步彰显江南水乡城市的魁力。【舟山组】展示一:舟山海洋博物馆资料海:从水,为江河水溪:每,表示特定范围内的任何一个、一组或总体。水每为海,由江河水溪中的每一滴水汇聚而成,是每一滴水的归宿。古人云海呐百川,有容乃大。意思是海是
上传时间:2023-05-08 页数:17
466人已阅读
(5星级)
图形的相似和比例线段--巩固练习(基础)【巩固练习】一.选择题1.(2014秋•慈溪市期末)如图,用放大镜将图形放大,这种图形的改变是()A.相似 B.平移 C.轴对称 D.旋转2. 下列四条线段中,不能成比例的是() A. =2,=4,=3,=6B. =,=,=1,=C. =6,=4,=10,=5D. =,=2,=,=23. 下列命题正确的是()A.所有的等腰三角形都相似 B.所有的菱形都相似C.所有的矩形都相似 D.所有的等腰直角三角形都相似4. 某学习小组在讨论变化的鱼时,知道大鱼与小鱼是相似图形,如图所示,则小鱼上的点(a,b)对应大鱼上的点()A.(-2a,-2b) B.(-a,-2b) C.(-2b,-2a) D.(-2a,-b)5. 一个三角形三边的长分别为3,5,7,另一个与它相似的三角形的最长边是21,则此三角形其它两边的和是()A.19 B.17 C.24 D.21 6. .△ABC与△A1B1C1相似且相似比为,△A1B1C1与△A2B2C2相似且相似比为,则△ABC与△A2B2C2的相似比为 ()A. B. C.或 D.二. 填空题7. 两地实际距离为1 500 m,图上距离为5 cm,这张图的比例尺为_______.18. 若,则________9.判定两个多边形相似的方法是:当两个多边形的对应边_______,对应角_______时,两个多边形相似.10.已知则11.两个三角形相似,其中一个三角形两个内角分别是40°,60°,则另一个三角形的最大角为______,最小角为____________.12.(2015春·庆阳校级月考) 要制作两个形状相同的三角形框架,其中一个三角形框架的三边长分别为4、5、6,另一个三角形框架的一条最短边长为2,则另外一个三角形的周长为 .三 综合题13. (2014春•徐州校级月考)(1)已知a、b、c、d是成比例线段,其中a=3cm,b=2cm,c=6cm,求线段d的长;(2)已知线段a、b、c,a=4cm,b=9cm,线段c是线段a和b的比例中项,求线段c的长.14. 如图,依次连接一个正方形各边的中点所形成的四边形与正方形相似吗?若相似,求出相似比;若不相似,说明理由.15. 市场上供应的某种纸有如下特征:每次对折后,所得的长方形均和原长方形相似,则纸张(矩形)的长与宽应满足什么条件? 【答案与解析】一、选择题1.【答案】A【解析】根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选A.22.【答案】C.【解析】求出最大与最小的两数的积,以及余下两数的积,看所得积是否相等来鉴别它们是否成比例.3.【答案】 D4.【答案】 A 【解析】 由图可知,小鱼和大鱼的相似比为1:2,若将小鱼放大1倍,则小鱼和大鱼关于原点对称.5.【答案】C【解析】相似三角形对应边的比相等6.【答案】A 【解析】 相似比AB︰A1B1=,A1B1︰A2B2=,计算出AB︰A2B2.二、填空题7.【答案】.1:30 000 【解析】比例尺=图上距离︰实际距离.8.【答案】 【解析】由可得,故填.9.【答案】成比例;相等.10.【答案】【解析】提示:设11.【答案】80°,40°.12.【答案】 7.5.【解析】设另一个三角形周长是x. ∵一个三角形的三边长是4,5,6,∴这个三角形的周长为:4+5+6=15.∵与它相似的另一个三角形最短的一边长是2, ∴, 解得:x=7.5.∴另一个三角形的周长是7.5.三、解答题13.【解析】解:(1)∵a、b、c、d是成比例线段,∴a:b=c:d,∵a=3cm,b=2cm,c=6cm,∴d=4cm;3(2)∵线段c是线段a和b的比例中项,a=4cm,b=9cm.∴c2=ab=36,解得:c=±6,又∵线段是正数,∴c=6cm.14.【解析】要探究正方形是否与四边形相似,需知道四边形是否是正方形,若是正方形,则两正方形一定相似,若不是正方形,则不相似,因为所有的正方形都是相似的. 设正方形的边长为,由题意可知,同理由,可得同理45°,,四边形是正方形∴正方形 与正方形相似,即两正方形的相似比是.15.【解析】如图,为了方便分析可先画出草图,根据题意知两个矩形的长边之比应等于短边之比.设矩形的
上传时间:2023-04-30 页数:5
466人已阅读
(5星级)
图形的相似和比例线段--巩固练习(提高)【巩固练习】一.选择题1. 在比例尺为1︰1 000 000的地图上,相距3cm的两地,它们的实际距离为()A.3 km B.30 km C.300 km D.3 000 km 2.(2015•兰州一模)若3a=2b,则的值为()A. B. C.D. 3. 已知△ABC的三边长分别为6cm、7.5cm、9cm,△DEF的一边长为4cm,当△DEF的另两边的长是下列哪一组时,这两个三角形相似()A.2cm,3cm B.4cm,5cm C.5cm,6cm D.6cm,7cm4.△ABC与△A1B1C1相似且相似比为,△A1B1C1与△A2B2C2相似且相似比为,则△ABC与△A2B2C2的相似比为 () A. B. C.或 D.5.下列两个图形:① 两个等腰三角形;② 两个直角三角形;③ 两个正方形;④ 两个矩形;⑤ 两个菱形;⑥ 两个正五边形.其中一定相似的有()A. 2组B. 3组 C. 4组D. 5组6.一个钢筋三角架三边长分别是20cm,50cm,60cm,现要做一个与其相似的三角架,只有长30cm,50cm的两根钢筋,要求以其中一根为一边,从另一根截下两段(允许有余料)做为其他两边,则不同的截法有( )A.一种B.两种 C.三种D.四种二. 填空题7. (2014•宜昌模拟)在一张比例尺为1:5 000 000的地图上,甲、乙两地相距70毫米,此两地的实际距离为_________.8. △ABC的三条边长分别为、2、,△A′B′C′的两边长分别为1和,且△ABC与△A′B′C′相似,那么△A′B′C′的第三边长为____________9. 如图:梯形ADFE相似于梯形EFCB,若AD=3,BC=4,则110.已知若若:=___. 11.如图:AB:BC=________,AB:CD=_________,BC:DE=________,AC:CD=__________,CD:DE=________. 12. 用一个放大镜看一个四边形ABCD,若四边形的边长被放大为原来的10倍,下列结论①放大后的∠B是原来∠B的10倍;②两个四边形的对应边相等;③两个四边形的对应角相等,则正确的有.三.综合题13.如果,一次函数经过点(-1,2),求此一次函数解析式.14. 如图,在矩形ABCD中,AB=2AD,线段EF=10,在EF上取一点M,分别以EM、MF为一边作矩形EMNH、MFGN,使矩形MFGN与矩形ABCD相似.令MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少? 15.(2014秋·滨江区期末)从一个矩形中剪去一个正方形,如图所示,若剩下的矩形与原矩形相似,求原矩形的长边与宽边比.2 【答案与解析】一、选择题1.【答案】B【解析】图上距离︰实际距离=1:1 000 000.2.【答案】A【解析】∵3a=2b, ∴,设a=2k,则b=3k,则故选A.3.【答案】C 【解析】 设△DEF的另两边的长分别为xcm,ycm,因为△ABC与△DEF相似,所以有下列几种情况: 当时,解得; 当时,解得; 当时,解得;所以选C.4.【答案】A 【解析】 相似比AB︰A1B1=,A1B1︰A2B2=,计算出AB︰A2B2.5.【答案】A【解析】只有两个正方形和正五边形相似.6.【答案】B二、填空题7.【答案】350千米.【解析】设甲、乙两地的实际距离为xmm,31:5000000=70:x,解得x=350000000.350000000mm=350千米.即甲乙两地的实际距离为350千米.8.【答案】 【解析】提示:△A′B′C′已知两边之比为1:,在△ABC中找出两边、,它们长度之比也为1︰,根据相似三角形对应边的对应关系,求出相似比.9.【答案】 .【解析】因为梯形ADFE相似于梯形EFCB,所以,即EF=,所以10.【答案】11.【答案】1:3;1:2;1:2;2:1;1:3.12.【答案】 ③三、解答题13.【解析】∵∴∴则分两种情况:(1),即, (2),即所以当,过点(-1,2)时,当,过点(-1,2)时,.414.【解析】∵矩形MFGN与矩形ABCD相似当时,S有最大值,为.15.【解析】根据矩形相似的性质找出相应的解析式求解.设原矩形的长为x,宽为y,则剩下矩形的长为y,宽为x-
上传时间:2023-04-30 页数:5
466人已阅读
(5星级)
相似三角形的判定--知识讲解(基础)【学习目标】1、了解相似三角形的概念, 掌握相似三角形的表示方法及判定方法;2、进一步探索相似三角形的判定及其应用,提高运用类比思想的自觉性,提高推理能力.【要点梳理】要点一、相似三角形在和中,如果我们就说与相似,记作∽.k就是它们的相似比,∽读作相似于.要点诠释:(1)书写两个三角形相似时,要注意对应点的位置要一致,即∽,则说明点A的对应点是A′,点B的对应点是B′,点C的对应点是C′;(2)对于相似比,要注意顺序和对应的问题,如果两个三角形相似,那么第一个三角形的一边和第二个三角形的对应边的比叫做第一个三角形和第二个三角形的相似比.当相似比为1时,两个三角形全等.要点二、相似三角形的判定定理1.判定方法(一):平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.2.判定方法(二):如果两个三角形的三组对应边的比相等,那么这两个三角形相似.3.判定方法(三):如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.要点诠释:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必需是两边的夹角,否则,判断的结果可能是错误的. 4.判定方法(四):如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.要点诠释:要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.要点三、相似三角形的常见图形及其变换:1【典型例题】类型一、相似三角形1. 下列能够相似的一组三角形为( ).A.所有的直角三角形 B.所有的等腰三角形C.所有的等腰直角三角形 D.所有的一边和这边上的高相等的三角形【答案】C【解析】A中只有一组直角相等,其他的角是否对应相等不可知;B中什么条件都不满足;D中只有一条对应边的比相等;C中所有三角形都是由90°、45°、45°角组成的三角形,且对应边的比也相等.答案选C.【总结升华】根据相似三角形的概念,判定三角形是否相似,一定要满足三个角对应相等三条对应边的比相等.举一反三:【变式】(2014秋•江阴市期中)给出下列几何图形:①两个圆;②两个正方形;③两个矩形;④两个正六边形;⑤两个等边三角形;⑥两个直角三角形;⑦两个菱形.其中,一定相似的有 (填序号).【答案】①②④⑤.类型二、相似三角形的判定2. 如图所示,已知中,E为AB延长线上的一点,AB=3BE,DE与BC相交于F,请找出图中各对相似三角形,并求出相应的相似比.2【思路点拨】充分利用平行寻找等角,以确定相似三角形的个数.【答案与解析】∵ 四边形ABCD是平行四边形,∴ AB∥CD,AD∥BC,∴ △BEF∽△CDF,△BEF∽△AED.∴ △BEF∽△CDF∽△AED.∴ 当△BEF∽△CDF时,相似比;当△BEF∽△AED时,相似比; 当△CDF∽△AED时,相似比.【总结升华】此题考查了相似三角形的判定(有两角对应相等的两三角形相似)与性质(相似三角形的对应边成比例).解题的关键是要仔细识图,灵活应用数形结合思想.举一反三:【变式】 如图,AD、CE是△ABC的高,AD和CE相交于点F,求证:AF·FD=CF·FE.【答案】∵ AD、CE是△ABC的高,∴∠AEF=∠CDF=90°,又∵∠AFE=∠CFE,∴△AEF∽△CDF.3∴,即AF·FD=CF·FE. INCLUDEPICTURE"http://video.etiantian.com/security/82a94ffbfe97dce8b8e330929d6505ee/4c746ce0/ett20/resource/c97aa5ff8d5bc331c6502e939369177a/images/mb04_080317.gif" \* MERGEFORMATINET 3. (2016•福州)如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.【思路点拨】(1)先求得AD、CD的长,然后再计算出AD2与AC•CD的值,从而可得到AD2与AC•CD的关系;(2)由(1)可得到BD2=AC•CD,然后依据对应边成比例且夹角相等的两三角形相似证明△BCD∽△ABC,依据相似三角形的性质可知∠DBC=∠A,DB=CB,然
上传时间:2023-04-30 页数:6
466人已阅读
(5星级)
《一元二次方程》全章复习与巩固—巩固练习(提高)【巩固练习】一、选择题1. 关于x的一元二次方程(a-1)x2+x+|a|-1=0的一个根是0,则实数a的值为()A.-1B.0 C.1D.-1或12.已知a是方程x2+x﹣1=0的一个根,则22211aaa的值为()A.152B.152C.﹣1 D.13.(2015•德州)若一元二次方程x2+2x+a=0的有实数解,则a的取值范围是() A.a<1B.a≤4C.a≤1D.a≥14.已知关于x的方程2(2)230mxmxm有实根,则m的取值范围是()A.2mB.6m且2mC.6mD.6m5.如果是、是方程2234xx的两个根,则22的值为()A.1 B.17 C.6.25 D.0.256.(2016•台州)有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()A.x(x1﹣)=45B.x(x+1)=45C.x(x1﹣)=45D.x(x+1)=457. 方程x2+ax+1=0和x2-x-a=0有一个公共根,则a的值是() A.0 B.1 C.2 D.38. 若关于x的一元二次方程的两个实数根分别是,且满足.则k的值为()A.-1或 B.-1 C. D.不存在二、填空题9.关于x的方程2()0axmb的解是x1=-2,x2=1(a,m,b均为常数,a≠0),则方程2(2)0axmb的解是 .10.已知关于x的方程x2+2(a+1)x+(3a2+4ab+4b2+2)=0有实根,则a、b的值分别为.11.已知α、β是一元二次方程2430xx的两实数根,则(α-3)(β-3)=________.12.当m=_________时,关于x的方程是一元二次方程;当m=_________时,此方程是一元一次方程. 13.把一元二次方程3x2-2x-3=0化成3(x+m)2=n的形式是____________;若多项式x2-ax+2a-3是一个完全平方式,则a=_________.14.(2015•绥化)若关于x的一元二次方程ax2+2x﹣1=0无解,则a的取值范围是.115.已知,那么代数式的值为________.16.当x=_________时,既是最简二次根式,被开方数又相同. 三、解答题17. (2016•南充)已知关于x的一元二次方程x26x﹣+(2m+1)=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.18.设(a,b)是一次函数y=(k-2)x+m与反比例函数nyx的图象的交点,且a、b是关于x的一元二次方程22(3)(3)0kxkxk的两个不相等的实数根,其中k为非负整数,m、n为常数.(1)求k的值;(2)求一次函数与反比例函数的解析式.19. 长沙市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售. (1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?20.已知某项工程由甲、乙两队合做12天可以完成,共需工程费用13 800元,乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的2倍少10天,且甲队每天的工程费用比乙队多150元.(1)甲、乙两队单独完成这项工程分别需要多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应该选择哪个工程队?请说明理由.【答案与解析】一、选择题1.【答案】A;【解析】先把x=0代入方程求出a的值,然后根据二次项系数不能为0,把a=1舍去.2.【答案】D;【解析】先化简22211aaa,由a是方程x2+x﹣1=0的一个根,得a2+a﹣1=0,则a2+a=1,再整体代入即可.2解:原式=2(1)(1)(1)aaaaa=1(1)aa,∵a是方程x2+x﹣1=0的
上传时间:2023-04-30 页数:5
466人已阅读
(5星级)
弧长和扇形面积、圆锥的侧面展开图—巩固练习(基础)【巩固练习】一、选择题1.一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是( )A.5π B. 4π C.3πD.2π2.如图所示,边长为12m的正方形池塘的周围是草地,池塘边A、B、C、D处各有一棵树,且AB=BC=CD=3m.现用长4m的绳子将一头羊拴在其中的一棵树上,为了使羊在草地上活动区域的面积最大,应将绳子拴在().A.A处B.B处C.C处 D.D处3.劳技课上,王红制作了一顶圆锥形纸帽,已知纸帽底面圆半径为10 cm,母线长为50 cm,则制作一顶这样的纸帽所需纸的面积至少为().A.250πcm2B.500πcm2C.600πcm2 D.1000πcm24.一圆锥的侧面积是底面积的2倍,这个圆锥的侧面展开图所对应的扇形的圆心角是().A.120° B.180°C.240° D.300°5.底面圆半径为3cm,高为4cm的圆锥侧面积是().A.7.5π cm2B.12π cm2C.15πcm2 D.24π cm26.(2015•新宾县模拟)如图,半径为1的圆O与正五边形ABCDE相切于点A、C,劣弧AC的长度为() A.πB.πC.πD.π 二、填空题7.已知扇形圆心角是150°,弧长为20πcm,则扇形的面积为________.8.如图,某传送带的一个转动轮的半径为40cm,转动轮转90°传送带上的物品A被传送厘米.第8题图 第9题图第11题图9.如图所示,已知扇形的半径为3cm,圆心角为120°,则扇形的面积为________cm2(结果保留π).110.(2015•北海)用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是.11.如图所示,把一块∠A=30°的直角三角板ABC,在水平桌面上绕点C按顺时针方向旋转到ABC的位置.若BC的长为15cm,求顶点A从开始到结束所经过的路径长 .12.如图所示,边长为1的菱形ABCD绕点A旋转,当B、C两点恰好落在扇形AEF的弧EF上时,弧BC的长度等于.三、解答题13.如图是两个半圆,点O为大半圆的圆心, AB是大半圆的弦关与小半圆相切,且AB=24.问:能求出阴影部分的面积吗?若能,求出此面积;若不能,试说明理由.14. 圆心角都是90°的扇形OAB与扇形OCD如图所示那样叠放在一起,连接AC、BD.(1)求证:△AOC≌△BOD;(2)若OA=3cm,OC=1cm,求阴影部分的面积.15.如图所示,线段AB与⊙O相切于点C,连接OA、OB,OB交⊙0于点D,已知OA=OB=6cm,AB=63cm,求:(1)⊙O的半径;(2)图中阴影部分的面积.16.(2015•温州模拟)已知:如图△ABC内接于⊙O,OH⊥AC于H,过A点的切线与OC的延长线交于点D,∠B=30°,.请求出:(1)∠AOC的度数;(2)线段AD的长(结果保留根号);(3)求图中阴影部分的面积.2【答案与解析】一、选择题1.【答案】C .【解析】圆锥的侧面展开图的弧长为2π,圆锥的侧面面积为2π,底面半径为1,圆锥的底面面积为π,则该圆锥的全面积是2π+π=3π.故选C.2.【答案】B【解析】小羊的活动区域是扇形,或是扇形的组合图形,只要算出每个扇形的面积,即可比较出拴在B处时活动区域的面积最大.3.【答案】B;4.【答案】B;【解析】由22rlr得2lr,∴22180nrr.∴n=180°.5.【答案】C;【解析】可求圆锥母线长是5cm.6.【答案】B;【解析】因为正五边形ABCDE的内角和是(52﹣)×180=540°,则正五边形ABCDE的一个内角==108°;连接OA、OB、OC,∵圆O与正五边形ABCDE相切于点A、C,∴∠OAE=OCD=90°∠,∴∠OAB=OCB=108°90°=18°∠﹣,∴∠AOC=144°所以劣弧AC的长度为=π.故选B.二、填空题7.【答案】240πcm2 ; 【解析】先由弧长求出扇形的半径,再计算扇形的面积.8.【答案】20π(cm);【解析】9040201801
上传时间:2023-04-30 页数:5
466人已阅读
(5星级)
轴对称全章复习与巩固(基础)【学习目标】1. 认识轴对称、轴对称图形,理解轴对称的基本性质及它们的简单应用;2. 了解垂直平分线的概念,并掌握其性质;3. 了解等腰三角形、等边三角形的有关概念,并掌握它们的性质以及判定方法.【知识网络】【要点梳理】要点一、轴对称1.轴对称图形和轴对称(1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.(2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上.(3)轴对称图形与轴对称的区别和联系区别: 轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的.联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.2.线段的垂直平分线线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.要点二、作轴对称图形 1.作轴对称图形(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.12.用坐标表示轴对称点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);点(x,y)关于原点对称的点的坐标为(-x,-y).要点三、等腰三角形 1.等腰三角形(1)定义:有两边相等的三角形,叫做等腰三角形.(2)等腰三角形性质 ①等腰三角形的两个底角相等,即等边对等角;②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称三线合一).特别地,等腰直角三角形的每个底角都等于45°.(3)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(即等角对等边).2.等边三角形(1)定义:三条边都相等的三角形,叫做等边三角形.(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°.(3)等边三角形的判定: ①三条边都相等的三角形是等边三角形; ②三个角都相等的三角形是等边三角形; ③有一个角为 60°的等腰三角形是等边三角形.3.直角三角形的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【典型例题】类型一、轴对称的判断与应用1、如图所示的是在一面镜子里看到的一个算式,该算式的实际情况是怎样的?【答案与解析】该算式的情况是:120+85=205【总结升华】从镜子里看物体——左右相反举一反三:【变式】如图,是一只停泊在平静水面上的小船,它的倒影应是图中的( ).【答案】B ;提示:从水中看物体——上下颠倒2、如图,C、D、E、F是一个长方形台球桌的4个顶点,A、B是桌面上的两个球,怎样击打A球,才能使A球撞击桌面边缘CF后反弹能够撞击B球?请画出A球经过的路线,并写出作法.2【答案与解析】解:作点A关于直线CF对称的点G,连接BG交CF于点P,则点P即为A球撞击桌面边缘CF的位置,A球经过的路线如下图.【总结升华】这道题利用了轴对称的性质,把AP转化成了线段GP,通过找A点的对称点,从而确定点P的位置.举一反三:【变式】(2016春•深圳校级期中)如图,∠AOB=30°,∠AOB内有一定点P,且OP=10.在OA上有一点Q,OB上有一点R.若△PQR周长最小,则最小周长是()A.10B.15C.20D.30【答案】A;提示:根据轴对称的性质,,△PQF的周长等于.3、如图,ΔABC中,点A的坐标为(0,1),点C的坐标为(4,3),点B的坐标为(3,1),如果要使ΔABD与ΔABC全等,求点D的坐标. 3【思路点拨】关于AB直线对称,且与△ABC全等的△ABD有一个,此时的△ABC与△ABD绕着AB的中点旋转180°,又可以找到两个与△ABC全等的三角形.【答案与解析】解:满足条件的点D的坐标有3个(4,-1
上传时间:2023-04-30 页数:8
466人已阅读
(5星级)
轴对称全章复习与巩固(提高)【学习目标】1. 认识轴对称、轴对称图形,理解轴对称的基本性质及它们的简单应用;2. 了解垂直平分线的概念,并掌握其性质;3. 了解等腰三角形、等边三角形的有关概念,并掌握它们的性质以及判定方法.【知识网络】【要点梳理】要点一、轴对称1.轴对称图形和轴对称(1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.(2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上.(3)轴对称图形与轴对称的区别和联系区别: 轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的.联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.2.线段的垂直平分线线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.要点二、作轴对称图形 1.作轴对称图形(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.2.用坐标表示轴对称1点(,)关于轴对称的点的坐标为(,-);点(,)关于轴对称的点的坐标为(-,);点(,)关于原点对称的点的坐标为(-,-).要点三、等腰三角形 1.等腰三角形(1)定义:有两边相等的三角形,叫做等腰三角形.(2)等腰三角形性质 ①等腰三角形的两个底角相等,即等边对等角;②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称三线合一).特别地,等腰直角三角形的每个底角都等于45°.(3)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(即等角对等边).2.等边三角形(1)定义:三条边都相等的三角形,叫做等边三角形.(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°.(3)等边三角形的判定: ①三条边都相等的三角形是等边三角形; ②三个角都相等的三角形是等边三角形; ③有一个角为 60°的等腰三角形是等边三角形.3.直角三角形的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【典型例题】类型一、轴对称的性质与应用1、如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点.在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有()A.1个 B.2个C.3个D.4个【思路点拨】分别以正方形的对角线和田字格的十字线为对称轴,来找三角形.【答案】C;【解析】先把田字格图标上字母如图,确定对称轴找出符合条件的三角形,再计算个数.△HEC与△ABC关于CD对称;△FDB与△ABC关于BE对称;△GED与△ABC关于HF对称;关于AG对称的是它本身.所以共3个.2【总结升华】本题考查了轴对称的性质;确定对称轴然后找出成轴对称的三角形是解题的关键.举一反三:【变式】如图,△ABC的内部有一点P,且D,E,F是P分别以AB,BC,AC为对称轴的对称点.若△ABC的内角∠A=70°,∠B=60°,∠C=50°,则∠ADB+∠BEC+∠CFA=()A.180°B.270° C.360°D.480°【答案】C;解:连接AP,BP,CP,∵D,E,F是P分别以AB,BC,AC为对称轴的对称点∴∠ADB=∠APB,∠BEC=∠BPC,∠CFA=∠APC,∴∠ADB+∠BEC+∠CFA=∠APB+∠BPC+∠APC=360°.2、已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,求∠APB的度数.【思路点拨】求周长最小,利用轴对称的性质,找到P的对称点来确定A、B的位置,角度的计算,可以通过三角形内角
上传时间:2023-04-30 页数:10
466人已阅读
(5星级)
【巩固练习】一、选择题1. 若∠1和∠2是同旁内角,若∠1=45°,则∠2的度数是()A.45°B.135°C.45°或135°D.不能确定2.(2016·遵义)如图,在平行线之间放置一块直角三角板,三角板的顶点分别在直线上,则∠1+2∠的值为() A.90°B.85°C.80°D.60°3.(湖北襄樊)如图所示,已知直线AB∥CD,BE平分∠ABC,交CD于D,∠CDE=150°,则∠C的度数为( )A.150°B.130°C.120°D.100°4.如图,OP∥QR∥ST,则下列等式中正确的是()A.∠1+∠2-∠3=90°B.∠2+∠3-∠1=180°C.∠1-∠2+∠3=180°D.∠1+∠2+∠3=180°5. 如图,AB∥CD∥EF,BC∥AD,AC平分∠BAD,且交EF于点O,则与∠AOE相等的角有( )A.5个B.4个C.3个D.2个6.(湖北潜江)如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于()1A.23°B.16°C.20°D.26°7. 如图所示,在一个由4×4个小正方形组成的正方形网格中,把线段EF向右平移3个单位,向下平移1个单位得到线段GH,则阴影部分面积与正方形ABCD的面积比是()A.3:4B.5:8C.9:16D.1:2 8. 有下列语句中,真命题的个数是()①画直线AB垂直于CD;②若|x|=|y|,则x2=y2.③两直线平行,同旁内角相等;④直线a、b相交于点O;⑤等角的余角相等.A.2个B.3个C.4个D.5个二、填空题9.(四川广安)如图所示,直线a∥b.直线c与直线a,b分别相交于点A、点B,AMb,垂足为点M,若158,则2= _____,直线之间的距离_____.10.(2016·汉阳区模拟)如图,AB∥CD,EF与AB、CD分别相较于点E、F,EP⊥EF,与∠EFD的平分线FP相较于点P,且∠BEP=50°,则∠EPF=________度. 11.(四川攀枝花)如图,直线l1l∥2,∠1=55°,∠2=65°,则∠3=.212.(2015•泸州)如图,ABCD∥,CB平分∠ABD.若∠C=40°,则∠D的度数为_______.13.如图所示,在长方形ABCD中,AB=10cm,BC=6cm,将长方形ABCD沿着AB方向平移________cm,才能使平移后的长方形HEFG与原来的长方形ABCD重叠部分的面积为24cm2.14.如图,已知ED∥AC,DF∥AB,有以下命题: ①∠A=∠EDF;②∠1+∠2=180°;③∠A+∠B+∠C=180°;④∠1=∠3.其中,正确的是________.(填序号)三、解答题15.(2015•建湖县一模)如图,ABCD∥,EF分别交AB、CD与M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠MGC的度数.16.已知 如图(1),CE∥AB,所以∠1=∠A,∠2=∠B,∴∠ACD=∠1+∠2=∠A+∠B.这是一个有用的事实,请用这个结论,在图(2)的四边形ABCD内引一条和边平行的直线,求∠A+∠B+∠C+∠D的度数.317.对于同一平面内的三条直线a、b、c,给出下列五个论断:①a∥b;②b∥c;③a⊥b;④a∥c;⑤a⊥c.以其中两个论断为条件,一个论断为结论,组成真命题,试写出所有的真命题.【答案与解析】一、选择题1. 【答案】D; 【解析】本题没有给出两条直线平行的条件,因此同旁内角的数量关系是不确定的.2. 【答案】A. 【解析】过点C作CD∥,则∠1=∠ACD.因∥ ,得CD∥,∴∠2=∠DCB.又∠ACD+∠DCB=90°,则∠1+∠2=90°.3. 【答案】C; 【解析】解:如图,∠3=30°,∠1=∠2=30°,∠C=180°-30°-30°=120°.4. 【答案】B; 【解析】反向延长射线ST交PR于点M,则在△MSR中,180°-∠2+180°-∠3+∠1=180°,即有∠2+∠3-∠1=180°.5. 【答案】A 【解析】与∠AOE相等的角有:∠DCA,∠ACB,∠COF,∠CAB,∠DAC. 6. 【答案】C; 【解析】解:∵AB∥EF∥CD,∠ABC=46°,∠CEF=154°,∴∠BCD=∠ABC=46°,∠FEC+∠ECD=180°,∴∠ECD=180°—∠FEC=26°,4∴∠BCE=∠BCD—∠ECD=46°—26°=20°.7. 【答案】B; 【解析】,,
上传时间:2023-04-30 页数:6
466人已阅读
(5星级)
【巩固练习】一、选择题1.下列说法中正确的有()①一条直线的平行线只有一条.②过一点与已知直线平行的直线只有一条.③因为a∥b,c∥d,所以a∥d.④经过直线外一点有且只有一条直线与已知直线平行.A.1个B.2个C.3个D.4个2.如果两个角的一边在同一直线上,另一边互相平行,则这两个角()A.相等B.互补C.互余D.相等或互补3.如图,能够判定DE∥BC的条件是()A.∠DCE+∠DEC=180°B.∠EDC=∠DCBC.∠BGF=∠DCBD.CD⊥AB,GF⊥AB4.一辆汽车在广阔的草原上行驶,两次拐弯后,行驶的方向与原来的方向相同,那么这两次拐弯的角度可能是 () .A.第一次向右拐40°,第二次向右拐140°.B.第一次向右拐40°,第二次向左拐40°.C.第一次向左拐40°,第二次向右拐140°.D.第一次向右拐140°,第二次向左拐40°.5.(2015•黔南州)如图,下列说法错误的是() A.若a∥b,b∥c,则a∥cB.若∠1=∠2,则a∥c C.若∠3=∠2,则b∥cD.若∠3+∠5=180°,则a∥c6.( 绍兴)学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图,(1)—(4)):1从图中可知,小敏画平行线的依据有()①两直线平行,同位角相等.②两直线平行,内错角相等.③同位角相等,两直线平行.④内错角相等,两直线平行.A.①②B. ②③ C. ③④ D. ④①二、填空题7. 在同一平面内的三条直线,它们的交点个数可能是________.8.(2016春•嵊州市期末)如图所示,在不添加辅助线及字母的前提下,请写出一个能判定AD∥BC的条件: (一个即可).9.规律探究:同一平面内有直线a1,a2,a3…,a100,若a1⊥a2,a2∥a3,a3⊥a4…,按此规律,a1和a100的位置是________.10.已知两个角的两边分别平行,其中一个角为40°,则另一个角的度数是 11.直线同侧有三点A、B、C,如果A、B两点确定的直线 与B、C两点确定的直线都与平行,则A、B、C三点 ,其依据是12. 如图,AB⊥EF于点G,CD⊥EF于点H,GP平分∠EGB,HQ平分∠CHF,则图中互相平行的直线有 .三、解答题13.如图,∠1=60°,∠2=60°,∠3=100°,要使AB∥EF,∠4应为多少度?说明理由.14.小敏有一块小画板(如图所示),她想知道它的上下边缘是否平行,而小敏身边只有一个量角器,你能帮助她解决这一问题吗?15.如图,把一张长芳形纸条ABCD沿AF折叠,已知∠ADB=20°,那么∠BAF为多少度时,才能使AB′∥BD?216.(2016春·岱岳区期末)如图,∠ABC=∠ADC,BF、DE分别是∠ABC、∠ADC的角平分线,∠1=∠2,求证:DC∥AB.【答案与解析】一、选择题1. 【答案】A 【解析】只有④正确,其它均错.2. 【答案】D 3. 【答案】B 【解析】内错角相等,两直线平行.4. 【答案】B5. 【答案】C.【解析】A、若a∥b,b∥c,则a∥c,利用了平行公理,正确;B、若∠1=∠2,则a∥c,利用了内错角相等,两直线平行,正确;C、∠3=∠2,不能判断b∥c,错误;D、若∠3+∠5=180°,则a∥c,利用同旁内角互补,两直线平行,正确;故选C.6. 【答案】C 【解析】解决本题关键是理解折叠的过程,图中的虚线与已知的直线垂直,过点P的折痕与虚线垂直.二、填空题7. 【答案】0或1或2或3个;8. 【答案】∠B=∠EAD或∠C=∠DAC或∠B+∠BAD=180°.【解析】由内错角相等,两直线平行可以添加条件∠C=∠DAC.由同位角相等,两直线平行可以添加条件∠B=∠EAD.由同旁内角互补,两直线平行可以添加条件∠B+∠BAD=180°.综上所述,满足条件的有:∠B=∠EAD或∠C=∠DAC或∠B+∠BAD=180°9. 【答案】a1∥a100;【解析】为了方便,我们可以记为a1⊥a2∥a3⊥a4∥a5⊥a6∥a7⊥a8∥a9⊥a10…∥a97⊥a98∥a99⊥a100,因为a1⊥a2∥a3,所以a1⊥a3,而a3⊥a4,所以a1∥a4∥a5.同理得a5∥a8 ∥a9,a9∥a12 ∥a13,…,接着这样的规律可以得a1∥a97∥a100,所以a1∥a100.10.【答案】 40°
上传时间:2023-04-30 页数:4
466人已阅读
(5星级)
甘肃省武威市2021年中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1. 3的倒数是( )A. B. C. D. 2. 2021年是农历辛丑牛年,习近平总书记勉励全国各族人民在新的一年发扬为民服务孺子牛,创新发展拓荒牛,艰苦奋斗老黄牛精神,某社区也开展了迎新春牛年剪纸展,下面的剪纸作品是轴对称图形的是()A. B. C. D. 3. 下列运算正确的是()A. B. C. D. 4. 中国疫苗撑起全球抗疫生命线!中国外交部数据显示,截止2021年3月底,我国已无偿向80个国家和3个国际组织提供疫苗援助.预计2022年中国新冠疫苗产能有望达到50亿剂,约占全球产能的一半,必将为全球抗疫作出重大贡献.数据50亿用科学记数法表示为()A. B. C. D. 5. 将直线向下平移2个单位长度,所得直线的表达式为()A. B. C. D. 6. 如图,直线的顶点在上,若,则()A. B. C. D. 7. 如图,点在上,,则()A. B. C. D. 8. 我国古代数学著作《孙子算经》有多人共车问题:今有三人共车,二车空;二人共车,九人步.问:人与车各几何?其大意如下:有若干人要坐车,如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行,问人与车各多少?设共有人,辆车,则可列方程组为()A. B. C. D. 9. 对于任意的有理数,如果满足,那么我们称这一对数为相随数对,记为.若是相随数对,则()A. B. C. 2D. 310. 如图1,在中,于点.动点从点出发,沿折线方向运动,运动到点停止.设点的运动路程为的面积为与的函数图象如图2,则的长为()A. 3B. 6C. 8D. 9二、填空题:本大题共8小题,每小题3分,共24分.11. 因式分解:___________.12. 关于的不等式的解集是___________.13. 已知关于的方程有两个相等的实数根,则的值是_____..14. 开学前,根据学校防疫要求,小芸同学连续14天进行了体温测量,结果统计如下表:体温()36.336.436.536.636.736.8天数(天)233411这14天中,小芸体温的众数是____________.15. 如图,在矩形中,是边上一点,是边的中点,,则________.16. 若点在反比例函数的图象上,则____(填>或<或=)17. 如图,从一块直径为的圆形铁皮上剪出一个圆心角为的扇形,则此扇形的面积为_____.18. 一组按规律排列的代数式:,…,则第个式子是___________.三、解答题:本大题共5小题,共26分.解答时,应写出必要的文字说明、证明过程或演算步骤.19. 计算:.20. 先化简,再求值:,其中.21. 在《阿基米德全集》中的《引理集》中记录了古希腊数学家阿基米德提出的有关圆的一个引理.如图,已知是弦上一点,请你根据以下步骤完成这个引理的作图过程.(1)尺规作图(保留作图痕迹,不写作法):①作线段的垂直平分线,分别交于点于点,连接;②以点为圆心,长为半径作弧,交于点(两点不重合),连接.(2)直接写出引理的结论:线段的数量关系.22. 如图1是平凉市地标建筑大明宝塔,始建于明嘉靖十四年(1535年),是明代平凉韩王府延恩寺的主体建筑.宝塔建造工艺精湛,与崆峒山的凌空塔遥相呼应,被誉为平凉古塔双璧.某数学兴趣小组开展了测量大明宝塔的高度的实践活动,具体过程如下:方案设计:如图2,宝塔垂直于地面,在地面上选取两处分别测得和的度数(在同一条直线上).数据收集:通过实地测量:地面上两点的距离为.问题解决:求宝塔的高度(结果保留一位小数).参考数据:,.根据上述方案及数据,请你完成求解过程.23. 一个不透明的箱子里装有3个红色小球和若干个白色小球,每个小球除颜色外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球,记下颜色后再放回箱子里,通过大量重复实验后,发现摸到红色小球的频率稳定于0.75左右.(1)请你估计箱子里白色小球的个数;(2)现从该箱子里摸出1个小球,记下颜色后放回箱子里,摇匀后,再摸出1个小球,求两次摸出的小球颜色恰好不同的概率(用画树状图或列表的方法).四、解答题:本大题共5小题,共40分.解答时,应写出必要的文字说明、证明过程或演算步骤.24. 为庆祝中国共产党建党100周年,某校开展了以学习百年党史,汇聚团结伟力为主题的知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分成五个等级,并绘制了如下不完整的统计图.请结合统计图,解答下列问题:等级成绩(1)本次调查一共随机抽取了_________名
上传时间:2023-05-08 页数:8
465人已阅读
(5星级)
2021年内蒙古赤峰市中考数学试卷一、选择题(每小题出的选项中只有一个符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑,每小题3分,共2分)1. -2021的相反数是()A. 2021B. -2021C. D. 【答案】A【解析】【分析】根据相反数的定义判断即可.【详解】解:-2021的相反数是2021,故选:A.【点睛】本题考查了相反数的概念,解题关键是明确相反数的定义,准确求解.2. 截至北京时间2021年1月3日6时,我国执行首次火星探测任务的天问一号火星探测器已经在轨飞行约163天,飞行里程突破4亿公里,距离地球接近1.3亿公里,距离火星约830万公里,数据8300000用科学记数法表示为()A. 8.3×105B. 8.3×106C. 83×105D. 0.83×107【答案】B【解析】【分析】直接利用科学记数法的定义及表示形式,其中,为整数求解即可.【详解】解:根据科学记数法的定义及表示形式,其中,为整数,则数据8300000用科学记数法表示为:,故选:B.【点睛】本题考查了科学记数法的表示方式,解题的关键是:掌握其定义和表达形式,根据题意确定的值.3. 下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是()A. B. C. D. 【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念逐项判断即可.【详解】A.不是轴对称图形,也不是中心对称图形,故此选项不符合题意;B.是轴对称图形,不是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项符合题意;D.不是轴对称图形,也不是中心对称图形,故此选项不符合题意,故选:C.【点睛】本题考查轴对称图形、中心对称图形,理解轴对称图形和中心对称图形是解答的关键.4. 下列说法正确的是()A. 清明时节雨纷纷是必然事件B. 为了了解一批灯管的使用寿命,可以采用普查的方式进行C. 一组数据2,5,4,5,6,7的众数、中位数和平均数都是5D. 甲、乙两组队员身高数据的方差分别为,,那么乙组队员的身高比较整齐【答案】D【解析】【分析】根据事件发生的可能性的大小判断即可.【详解】解:A、清明时节雨纷纷是随机事件,故不符合题意;B、为了了解一批灯管的使用寿命,不宜采用普查的方式进行,应采用抽查的方式进行,故不符合题意;C、一组数据2,5,4,5,6,7的众数、中位数都是,平均数为,故选项错误,不符合题意;D、甲、乙两组队员身高数据的方差分别为,,,乙组队员的身高比较整齐,故选项正确,符合题意;故选:D.【点睛】本题考查了必然事件、随机事件、不可能事件、解题的关键是:理解几种事件的定义.5. 下列计算正确的是()A. B. C. D. 【答案】D【解析】【分析】根据去括号法则可判断A,根据合并同类项法则可判断B,根据乘法公式可判断C,利用单项式乘法法则与积的乘方法则可判断D.【详解】解:A. ,故选项A去括号不正确,不符合题意;B. ,故选项B合并同类项正确,符合题意;C. ,故选项C公式展开不正确,不符合题意;D. ,故选项D单项式乘法计算不正确,不符合题意.故选择B.【点睛】本题考查去括号法则,同类项合并法则,乘法公式,积的乘方与单项式乘法,掌握去括号法则,同类项合并法则,乘法公式,积的乘方与单项式乘法是解题关键.6. 如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A. 85°B. 75°C. 60°D. 30°【答案】B【解析】【详解】分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.详解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选B.点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.7. 实数a、b、c在数轴上对应点的位置如图所示.如果,那么下列结论正确的是()A. B. C. D. 【答案】C【解析】【分析】根据a+b=0,确定原点的位置,根据实数与数轴即可解答.【详解】解:∵a+b=0,∴原点在a,b的中间,如图,由图可得:|a|<|c|,a+c>0,abc<0,,故选:C.【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.8. 五一期间,某地相关部门对观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整),下列结论错误的是()A. 本
上传时间:2023-05-08 页数:34
465人已阅读
(5星级)
客服
客服QQ:
2505027264
客服电话:
18182295159(不支持接听,可加微信)
微信小程序
微信公众号
回到顶部