首页 / 资源分类
  • 精品解析:浙江省台州市2021年中考数学真题(原卷版).doc

    2021年浙江省初中毕业生学业考试(台州卷) 数学亲爱的考生:欢迎参加考试!请你认真审题,仔细答题,发挥最佳水平,答题时,请注意以下几点:1.全卷共4页,满分150分,考试时间120分钟.2.答案必写在答题纸相应的位置上,写在试题卷、草稿纸上无效.3.答题前,请认真阅读答题纸上的注意事项,按规定答题.4.本次考试不得使用计算器.一、选择题(本题有10小题,每小题4分,共40分,请选出各题中一个符合题意的正确选项,不选多选、错选,均不给分)1. 用五个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是( )A. B. C. D. 2. 小光准备从A地去往B地,打开导航、显示两地距离为37.7km,但导航提供的三条可选路线长却分别为45km,50km,51km(如图).能解释这一现象的数学知识是( )A. 两点之间,线段最短B. 垂线段最短C. 三角形两边之和大于第三边D. 两点确定一条直线3. 大小在和之间的整数有()A. 0个B. 1个C. 2个D. 3个4. 下列运算中,正确的是( )A. a2+a=a3B. (ab)2=ab2C. a5÷a2=a3D. a5・a2=a105. 关于x的方程x24x+m=0有两个不相等的实数根,则m的取值范围是( )A. m>2B. m<2C. m>4D. m<46. 超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,设货架上原有鸡蛋的质量(单位:g)平均数和方差分别为,s2,该顾客选购的鸡蛋的质量平均数和方差1,,则下列结论一定成立的是( )A. 1B. 1C. s2>D. s27. 一把直尺与一块直角三角板按如图方式摆放,若∠1=47°,则∠2=( )A. 40°B. 43°C. 45°D. 47°8. 已知(a+b)2=49,a2+b2=25,则ab=( )A. 24B. 48C. 12D. 29. 将x克含糖10的糖水与y克含糖30的糖水混合,混合后的糖水含糖( )A. 20B. C. D. 10. 如图,将长、宽分别为12cm,3cm的长方形纸片分别沿AB,AC折叠,点M,N恰好重合于点P.若∠α=60°,则折叠后的图案(阴影部分)面积为( )A. (36)cm2B. (36)cm2C. 24 cm2D. 36 cm2二、填空题(本题有6小题,每小题5分,共30分)11. 因式分解:xyy2=_____.12. 一个不透明布袋中有2个红球,1个白球,这些球除颜色外无其他差别,从中随机模出一个小球,该小球是红色的概率为_____.13. 如图,将线段AB绕点A顺时针旋转30°,得到线段AC.若AB=12,则点B经过的路径长度为_____.(结果保留π)14. 如图,点E, F,G分别在正方形ABCD的边AB,BC,AD上,AF⊥EG.若AB=5,AE=DG=1,则BF=_____.15. 如图,在△ABC中,∠ACB=90°,AC<BC.分别以点A,B为圆心,大于AB的长为半径画弧,两弧交于D,E两点,直线DE交BC于点F,连接AF.以点A为圆心,AF为半径画弧,交BC延长线于点H,连接AH.若BC=3,则△AFH的周长为_____.16. 以初速度v(单位:m/s)从地面竖直向上抛出小球,从抛出到落地的过程中,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=vt4.9t2,现将某弹性小球从地面竖直向上抛出,初速度为v1,经过时间t1落回地面,运动过程中小球的最大高度为h1(如图1);小球落地后,竖直向上弹起,初速度为v2,经过时间t2落回地面,运动过程中小球的最大高度为h2(如图2).若h1=2h2,则t1:t2=_____.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24分14分,共80分)17. 计算:|2|+.18. 解方程组:19. 图1是放置在水平地面上的落地式话筒架实物图,图2是其示意图.支撑杆AB垂直于地l,活动杆CD固定在支撑杆上的点E处,若∠AED=48°,BE=110 cm,DE=80 cm,求活动杆端点D离地面的高度DF.(结果精确到1cm,参考数据:sin48°≈0.74, cos48°≈0.67, tan48°≈1. 11)20. 小华输液前发现瓶中药液共250毫升,输液器包装袋上标有15滴/毫升.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量;(2)求小华从输液开始到结束所需的时间.21. 如图,在四边形ABCD中,AB=AD=20,BC=DC=10(1)求证:△ABC≌△ADC;

    上传时间:2023-05-08 页数:8

    402人已阅读

    (5星级)

  • 《认识三角形》同步练习(2)(初中数学7年级下册).doc

    认识三角形1、已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A13cm B 6cmC 5cmD4cm2、在下列长度的四根木棒中,能与3cm,7cm两根木棒围成一个三角形的是( )A7cmB4cm C 3cmD10cm3、如图1,Rt△ABC中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=35°,则∠A的度数为()A 35° B 45° C55° D 65°4、已知一个三角形三个内角度数的比是1:5:6,则其最大内角的度数为()A60° B 75° C90° D120°5、如图2,已知AB∥CD,则( )A ∠1=∠2+∠3 B∠1=2∠2+∠3 C∠1=2∠2-∠3D ∠1=180°-∠2-∠36、如图所示,则△ABC的形状是( )A锐角三角形B 钝角三角形 C直角三角形 D等腰三角形7、在△ABC中,若AB=8,BC=6,则第三边AC的长度m的取值范围是 8、等腰三角形的两边长分别为4和9,则第三边长为9、△ABC的边长均为整数,且最大边的边长为7,那么这样的三角形共有 个10、在△ABC中,∠A=45°,∠B =22°,则∠C= 11、在△ABC中∠A:∠B=2:1,∠C=60°则∠A= 12、如图4,已知∠1=100°,∠2=140°,那么∠3= 13、如图,P为△ABC中BC边的延长线上一点,∠A=50°,∠B=70°,则∠ACP=EDABCA2B13DCCB2β3ββ�A321BCPA图4 图514、若等腰三角形的一个外角为70°,则它的底角为 度15、有两根长度分别为5cm和7cm的木棒,用长度为6cm的木棒与它们能组成三角形吗?16、一轮船要从A处驶向B处,如图,由于受大风影响,轮船一开始就偏离航线9°,航行到C处时发现∠ABC=11°,此时,轮船应把船头调转多少度的方向才能到达B处? 能力提升17、如果三角形的两边分别为3和5,那么这个三角形的周长可能是()A 15 B16 C8 D718、已知△ABC中,,则∠A= 度三角形中的有关线段19、如图6,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,△ABC中BC边上的高是()A FCBBE CAD DAE20、如图7,已知∠ACB=90°,CD⊥AB,垂足是D,则图中与∠A相等的角是()A∠1B ∠2 C ∠BD∠1,∠2和∠B21、能将一个三角形分成面积相等的两个三角形的一条线段是()DBCAA 中线 B角平分线 C高线D 三角形的角平分线22、如图8,AD,BE,CF是△ABC的三条中线,则AB=2=2 ,BD=,AE= 图6图7 图823、如图9,在△ABC中,AD是∠BAC的平分线,∠B=32°,∠C=66°,则∠ADC=°24、如图10,△ABC中,∠A=60°,∠ABC,∠ACB的平分线BD,CD交于点D,则∠BDC=图9 图1025、如图11,在△ABC中,∠A=70°,∠B=50°,CD平分∠ACB。求∠ACD的度数。EF

    上传时间:2023-04-30 页数:11

    402人已阅读

    (5星级)

  • 《多项式乘以多项式》典型例题(初中数学7年级下册).doc

    《多项式乘以多项式》典型例题例1计算例2 计算例3 利用,写出下列各式的结果;(1)(2)例4 计算例5 已知,求的值。例6 计算题:(1);(2);(3) (4).例7 已知计算的结果不含和项,求m,n的值。例8计算(1);(2);(3);(3)。参考答案例1解:原式 说明:多项式乘法在展开后合并同类项前,要检查积的项数是否等于相乘的两项式项数的积,防止重、漏。例2 解:原式说明:本题中前面有-号,进行多项式乘法运算时,应把结果写在括号里,再去括号,以防出错。例3 解:(1)(2)说明:(2)题中的即相当于公式中例4 解:说明:三个多项式相乘,可先把两个多项式相乘,再把积与剩下的一个多项式相乘。例5 分析:已知,而不知值但要求的值时,可把看成一个整体,把化成含的形式。解: ∵ ∴ 即 说明:把化成含有的形式变换过程中,逆向运用了同底数幂的运算:,也逆向运用了乘方对加法的分配律及添括号法则。例6 分析:第(1)小题,先用分别与与相乘,再用分别与与相乘,再把所得的积相加;第(2),(3),(4)小题同上。相乘时注意乘积中各项的符号的确定。解:(1) (2)(3)(4) 说明:两个多项式相乘,应注意防止漏项,计算过程中的一个多项式的第一项应遍乘另一个多项式的第一项,在计算时要注意确定积中各项的符号;如有同类项,则应合并同类项,得出最简结果。例7 分析:首先按多项式乘法法则,进行计算并按降(或升)幂排列,因不含和项,所以这两项的系数均为0,从而列出关于m,n的方程,从而求解。解:原式∵ 不含和项,∴ ,且,∴,。例8解:(1) (2) (3)= (4)说明:含有一个相同字母的两个一次二项式(一次项系数都是1)相乘,得到的积是同一个字母的二次多项式,它的二次项系数是1,一次项系数是两个因式中常数项的和,常数项是两个因式中的常数项的积。用公式表示就是(是常数)。记住这个公式会帮助我们在某些类似问题中提高运算速度和运算准确率。

    上传时间:2023-04-30 页数:4

    402人已阅读

    (5星级)

  • 中考数学总复习:图形的变换--知识讲解(提高)(1).doc

    中考总复习:图形的变换--知识讲解(提高)【考纲要求】1.通过具体实例认识轴对称、平移、旋转,探索它们的基本性质;2.能够按要求作出简单平面图形经过轴对称、平移、旋转后的图形,能作出简单平面图形经过一次或两次轴对称后的图形;3.探索基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性质及其相关性质.4.探索图形之间的变换关系(轴对称、平移、旋转及其组合);5.利用轴对称、平移、旋转及其组合进行图案设计;认识和欣赏轴对称、平移、旋转在现实生活中的应用.【知识网络】【考点梳理】考点一、平移变换1. 平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.【要点诠释】(1)平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内的变换;(2)图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离,这两个要素是图形平移的依据;(3)图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的大小,这个特征是得出图形平移的基本性质的依据.2.平移的基本性质:由平移的概念知,经过平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所连的线段平行且相等,对应角相等.【要点诠释】(1)要注意正确找出对应线段,对应角,从而正确表达基本性质的特征;(2)对应点所连的线段平行且相等,这个基本性质既可作为平移图形之间的性质,又可作为平移作图的依据.考点二、轴对称变换1.轴对称与轴对称图形 轴对称:把一个图形沿着某一条直线折叠,如果能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也叫做这两个图形成轴对称,这条直线叫做对称轴,折叠后重合的对应点,叫做对称点. 轴对称图形:把一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.2.轴对称变换的性质1①关于直线对称的两个图形是全等图形.②如果两个图形关于某直线对称,对称轴是对应点连线的垂直平分线.③两个图形关于某直线对称,如果它们对应线段或延长线相交,那么交点在对称轴上.④如果两个图形的对应点连线被同一直线垂直平分,那么这两个图形关于这条直线对称.3.轴对称作图步骤①找出已知图形的关键点,过关键点作对称轴的垂线,并延长至2倍,得到各点的对称点.②按原图形的连结方式顺次连结对称点即得所作图形.4.翻折变换:图形翻折问题是近年来中考的一个热点,其实质是轴对称问题,折叠重合部分必全等,折痕所在直线就是这两个全等形的对称轴,互相重合的两点(对称点)连线必被折痕垂直平分.【要点诠释】翻折的规律是,折叠部分的图形,折叠前后,关于折痕成轴对称,两图形全等,折叠图形中有相似三角形,常用勾股定理.考点三、旋转变换1.旋转概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角.2.旋转变换的性质图形通过旋转,图形中每一点都绕着旋转中心沿相同的方向旋转了同样大小的角度,任意一对对应点与旋转中心的连线都是旋转角,对应点到旋转中心的距离相等,对应线段相等,对应角相等,旋转过程中,图形的形状、大小都没有发生变化.3.旋转作图步骤①分析题目要求,找出旋转中心,确定旋转角.②分析所作图形,找出构成图形的关键点.③沿一定的方向,按一定的角度、旋转各顶点和旋转中心所连线段,从而作出图形中各关键点的对应点.④ 按原图形连结方式顺次连结各对应点.【要点诠释】1.图形变换与图案设计的基本步骤①确定图案的设计主题及要求;②分析设计图案所给定的基本图案;③利用平移、旋转、轴对称对基本图案进行变换,实现由基本图案到各部分图案的有机组合;④对图案进行修饰,完成图案.2.平移、旋转和轴对称之间的联系一个图形沿两条平行直线翻折(轴对称)两次相当于一次平移,沿不平行的两条直线翻折两次相当于一次旋转,其旋转角等于两直线交角的2倍.【典型例题】类型一、平移变换1. 如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A′C′D′.(1)证明△A′AD′≌△CC′B;(2)若∠ACB=30°,试问当点C′在线段AC上的什么位置时,四边形ABC′D′是菱形,并请说明理由. 2【思路点拨】(1)根据已知利用SAS判定△A′AD′≌△CC′B;(2)由已知可推出四边形ABC′D′是平行四边形,只要再证明一组邻边相等即可确定四边形ABC′D′是菱形,由已知可得到BC′=12AC,AB=12AC,从而得到AB=BC′,所以四边形ABC′D′是菱形.【答案与解析】(1)证明:∵四边形ABCD是矩形,△A′C′D′由△ACD平移得到,∴A′D′=

    上传时间:2023-04-30 页数:14

    402人已阅读

    (5星级)

  • 中考数学总复习:一元二次方程、分式方程的解法及应用--巩固练习(提高).doc

    中考总复习:一元二次方程、分式方程的解法及应用—巩固练习(提高)【巩固练习】一、选择题1. 已知方程有一个根是,则下列代数式的值恒为常数的是( )A.B. C. D.2.(2015•泰安模拟)方程x2+ax+1=0和x2﹣x﹣a=0有一个公共根,则a的值是()A.0 B.1 C.2 D.33.若方程的两根为、,则的值为( ). A.3 B.-3C. D. 4.如果关于x的方程A. B. C. D. 35.如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为()A.1米 B.1.5米 C.2米 D.2.5米6.关于x的方程2(6)860axx有实数根,则整数a的最大值是()A.6 B.7 C.8 D.9二、填空题7.(2015•平房区二模)方程﹣1=的解为8.关于的一元二次方程有两个不相等的实数根,则的取值范围是.9.已知x1=-1是方程052mxx的一个根,则m的值为;方程的另一根x2= .110.某市政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降价,由每盒72元调至56元.若每次平均降价的百分率为,由题意可列方程为_____ ___.11.若关于x的方程 -1=0有增根,则a的值为.12.当 k的值是 时,方程= 只有一个实数根.三、解答题13.(2015•宝应县校级模拟)解下列分式方程:(1);(2).14. 若关于x 的方程-= 只有一个解,试求k值与方程的解.15.某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的改水工程予以一定比例的补助.2010年,A市在省财政补助的基础上投入600万元用于改水工程,计划以后每年以相同的增长率投资,2012年该市计划投资改水工程1176万元.(1)求A市投资改水工程的年平均增长率;(2)从2010年到2012年,A市三年共投资改水工程多少万元?16. 从甲、乙两题中选做一题,如果两题都做,只以甲题计分.题甲:若关于的一元二次方程有实数根.(1)求实数k的取值范围;(2)设,求t的最小值.题乙:如图(16),在矩形ABCD中,P是BC边上一点,连结DP并延长,交AB的延长线于点Q.(1)若,求的值;图(16)PQDCBA2(2)若点P为BC边上的任意一点,求证.我选做的是_______题.【答案与解析】一、选择题1.【答案】D;【解析】将-a代入中,则a2-ab+a=0,则a-b+1=0∴a-b=-1(恒为常数).2.【答案】C;【解析】∵方程x2+ax+1=0和x2﹣x﹣a=0有一个公共根,∴(a+1)x+a+1=0,解得x=﹣1,当x=﹣1时,a=2,故选C.3.【答案】B;【解析】.4.【答案】B;【解析】把方程两边都乘以若方程有增根,则x=3,即5+m=3,m=-2. 5.【答案】A;【解析】如图将路平移,设路宽为x米,可列方程为:(30-x)(20-x)=551,解得:x=1或者x=49(舍去).6.【答案】C;【解析】由题意得方程有实数根,则分两种情况,当a-6=0时,a=6,此时x=,当a-6≠0时,△=b2-4ac≥0,解得a≤ ,综合两种情况得整数a的最大值是8.3二、填空题7.【答案】x=; 【解析】方程的两边同乘2(3x1﹣),得42﹣(3x1﹣)=3,解得x=.检验:把x=代入2(3x1﹣)=1≠0.∴原方程的解为:x=. 8.【答案】且;【解析】 △>0且m-1≠0.9.【答案】m=-4;x2=5;【解析】由题意得:05)1()1(2m 解得m=-4当m=-4时,方程为0542xx解得:x1=-1 x2=5 所以方程的另一根x2=5.10.【答案】;【解析】平均降低率公式为 (a为原来数,x为平均降低率,n为降低次数,b为降低后的量.)11.【答案】-1;【解析】原方程可化为:(a-1)x=-2.∵分式方程有增根, ∴ x=1 把x=1代入整式方程有a=-1.12.【答案】 -1,0,3;【解析】原方程可化为:x2+2x-k=0当⊿=22+4k=0,即k=-1时,x1=x2=-1当⊿=22+4k>0,即k>-1时,方程有两个不等实数根.由题意可知:    ① 当增根x=0时,代入二次方程有k=0,方程唯一解为x=-2;②当增根x=1时,代入二次方程有k=

    上传时间:2023-04-30 页数:6

    402人已阅读

    (5星级)

  • 初中8年级(上册)轴对称全章复习与巩固(提高)巩固练习.doc

    【巩固练习】一.选择题1. 如图所示,将矩形纸片先沿虚线AB按箭头方向向右对折,接着对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是( )2. 如图,将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF的大小为( )A. 15° B. 30°C. 45°D. 60°3.(2016秋·诸城市月考)下列语句中,正确的有() ①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧;⑤角平分线上任意一点到角的两边的线段长相等.A.1个B. 2个C. 3个D. 4个4. 小明从镜中看到电子钟示数是,则此时时间是( )A.12:01 B.10:51   C.11:59D.10:215. 已知A(4,3)和B是坐标平面内的两个点,且它们关于直线x=-3轴对称,则平面内点B的坐标是( )A.(1,3)B.(-10,3) C.(4,3)D.(4,1)6.(2014•本溪校级二模)如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()1 A.B.C.D.不能确定7. 如图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处.若1129,则2 的度数为( )A. 49° B. 50° C. 51°D. 52°8. 如图, △ABC中, ∠ACB=90°, ∠ABC=60°, AB的中垂线交BC的延长线于D,交AC于E, 已知DE=2.AC的长为() A.2 B.3C. 4 D.5二.填空题9. 如图,在矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=CE.若将纸片沿AE折叠,点B恰好与AC上的点1B重合,则AC=cm.10. 在同一直角坐标系中,A(a+1,8)与B(-5,b-3)关于x轴对称,则a=___________,b=___________.11.如图所示,△ABC中,已知∠B和∠C的平分线相交于点F,过点F作DE∥BC,交AB于点D,交AC于点E,若BD+CE=9,线段DE=_______.212. (2016春•淄博期中)如图,∠BAC=30°,AM是∠BAC的平分线,过M作ME∥BA交AC于E,作MD⊥BA,垂足为D,ME=10cm,则MD=   .13.如图所示,在△ABC中,AB=AC,点O在△ABC内,且∠OBC=∠OCA,∠BOC=110°,求∠A的度数为________.14. 如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为.15.(2014•徐州模拟)如图,△ABC的面积为4cm2,BP平分∠ABC,且AP⊥BP于P,则△PBC的面积为cm2.16. 如图,六边形ABCDEF的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________。3三.解答题17.如图所示,△ABC中,D,E在BC上,且DE=EC,过D作DF∥BA,交AE于点F,DF=AC,求证AE平分∠BAC.18. 如图所示,等边三角形ABC中,AB=2,点P是AB边上的任意一点(点P可以与点A重合,但不与点B重合),过点P作PE⊥BC,垂足为E,过E作EF⊥AC,垂足为F,过F作FQ⊥AQ,垂足为Q,设BP=x,AQ=y.(1)写出y与x之间的关系式;(2)当BP的长等于多少时,点P与点Q重合?19.(2014•清河区三模)阅读理解:如图1,在△ABC的边AB上取一点P,连接CP,可以把△ABC分成两个三角形,如果这两个三角形都是等腰三角形,我们就称点P是△ABC的边AB上的和谐点.解决问题:(1)如图2,△ABC中,∠ACB=90°,试找出边AB上的和谐点P,并说明理由.(2)已知∠A=40°,△ABC的顶点B在射线l上(图3),点P是边AB上的和谐点,请在图3中画出所有符合条件的B点,并写出相应的∠B的度数.420.已知,∠BAC=90º,AB=AC,D为AC边上的中点,AN⊥BD于M,交BC于N.求证:∠ADB=∠CDNMND

    上传时间:2023-04-30 页数:9

    402人已阅读

    (5星级)

  • 初中8年级(上册)分式的混合运算和整数指数幂(基础)知识讲解.doc

    分式的混合运算,整数指数幂(基础)【学习目标】1.掌握分式的四则运算法则、运算顺序、运算律.2.能正确进行分式的四则运算.3. 掌握零指数幂和负整数指数幂的意义.4.掌握科学记数法.【要点梳理】要点一、分式的混合运算与分数的加、减、乘、除混合运算一样,分式的加、减、乘、除混合运算,也是先算乘、除,后算加、减;遇到括号,先算括号内的,按先小括号,再中括号,最后大括号的顺序计算.分式运算结果必须达到最简,能约分的要约分,保证结果是最简分式或整式.要点诠释:(1)正确运用运算法则:分式的乘除(包括乘方)、加减、符号变化法则是正确进行分式运算的基础,要牢牢掌握..(2)运算顺序:先算乘方,再算乘、除,最后算加、减,遇有括号,先算括号内的.(3)运算律:运算律包括加法和乘法的交换律、结合律,乘法对加法的分配律.能灵活运用运算律,将大大提高运算速度.要点二、零指数幂任何不等于零的数的零次幂都等于1,即010aa.要点诠释:同底数幂的除法法则可以推广到整数指数幂.即mnmnaaa(0a,m、n为整数)当mn时,得到010aa.要点三、负整数指数幂任何不等于零的数的n(n为正整数)次幂,等于这个数的n次幂的倒数,即1nnaa(a≠0,n是正整数).引进了零指数幂和负整数指数幂后,指数的范围已经扩大到了全体整数,以前所学的幂的运算性质仍然成立. 要点诠释:0naa是na的倒数,a可以是不等于0的数,也可以是不等于0的代数式.例如1122xyxy(0xy),551abab(0ab).要点四、科学记数法的一般形式(1)把一个绝对值大于10的数表示成10na的形式,其中n是正整数,1||10a(2)利用10的负整数次幂表示一些绝对值较小的数,即10na的形式,其中n是正整数,1||10a.1用以上两种形式表示数的方法,叫做科学记数法.【典型例题】类型一、分式的混合运算1、计算:(1)22111ababab;(2)22111ababab.【思路点拨】(1)先计算括号里的加减法,然后将除法转化为乘法进行计算;(2)先将除法转化为乘法,然后用乘法分配律简化运算.【答案与解析】解:(1)22111ababab1()()()()()()abababababababab12()()()()aabababab1()()1()()22ababababaa.(2)22111ababab111()()abababab11()()abababab11()()()()abababababab2ababa.【总结升华】解决此类题的方法:首先观察混合运算的特点,当分式的加减法运算作为除式时,一定要先运算加减法,再参与乘除运算,当分式的加减运算作为因式或被除式时,可把乘除法统一为乘法并根据特点恰当运用运算律简化运算.2、(2015•裕华区模拟)化简:(﹣x+1)÷.2【思路点拨】将括号内部分通分相减,再将除法转化为乘法,因式分解后约分即可.【答案与解析】解:原式=[﹣(x﹣1)]•=[﹣]•=•=.【总结升华】本题考查了分式的混合运算,将括号中的﹣x+1变形为-(x-1),并看成分母是1的分数是解决此类问题的一般方法,熟悉约分、通分、因式分解是解题的关键.类型二、负指数次幂的运算3、计算:(1)223;(2)23131()()ababab.【思路点拨】根据负整数指数幂的意义将负整数指数幂转化为正整数指数幂,然后计算.【答案与解析】解:(1)222119434293;(2)2313123330()()abababababababb.【总结升华】要正确理解负整数指数幂的意义.举一反三:【变式1】计算:4513012222(3.14)2.【答案】解: 4513012222(3.14)2453111111221162122232281151611732832【变式2】(2016春•吉安校级月考)计算:(﹣2016)02﹣2﹣﹣(﹣)﹣3﹣(﹣3)23【答案】解:原式=1﹣+89=﹣﹣.类型三、科学记数法4、用科学记数法表示下列各数:(1)0.00001;(2)0.000000203;(3)-0.000135;(4)0.00067【答案与解析】解:(1)0.00001=510;(2)0.

    上传时间:2023-04-30 页数:4

    402人已阅读

    (5星级)

  • 初中7年级(上册)绝对值(基础)巩固练习.doc

    【巩固练习】一、选择题1.(2015.常州)-3的绝对值是().A. 3B.-3  C.13 D.132.下列判断中,正确的是( ).A. 如果两个数的绝对值相等,那么这两个数相等;B. 如果两个数相等,那么这两个数的绝对值相等;C.任何数的绝对值都是正数;D.如果一个数的绝对值是它本身,那么这个数是正数.3.下列各式错误的是().A.115533B.|8.1|8.1C.2233 D.11224.2010年12月某日我国部分城市的平均气温情况如下表(记温度零上为正,单位℃)城市温州上海北京哈尔滨广州平均气温60-9-1515则其中当天平均气温最低的城市是().A.广州B.哈尔滨C.北京D.上海5.下列各式中正确的是().A.103B.1134C.-3.7<-5.2D.0>-26.(2016•娄底)已知点M、N、P、Q在数轴上的位置如图,则其中对应的数的绝对值最大的点是()A.M B.NC.P D.Q7.若|a| + a=0,则a是().A. 正数B. 负数C.正数或0D.负数或0二、填空题8.(2015•铜仁市)|﹣6.18|=.9. 若m,n互为相反数,则| m |________| n |;| m |=| n |,则m,n的关系是________.10.已知| x |=2,| y |=5,且x>y,则x=________,y=________.11.满足3.5≤| x | <6的x的整数值是___________.12. 式子|2x-1|+2取最小值时,x等于.13.数a在数轴上的位置如图所示.则|a-2|=__________.14. 若aa,则a 0;若aa,则a0;1若1aa,则a 0;若aa≥,则a;若11aa,则a的取值范围是.15.在数轴上,与-1表示的点距离为2的点对应的数是 .三、解答题16.(2016春•桐柏县期末)若|a+1.2|+|b﹣1|=0,那么a+(﹣1)+(﹣1.8)+b等于多少?17.如图,数轴上的三点A、B、C分别表示有理数a、b、c.则:a﹣b0,a+c0,b﹣c0.(用<或>或=号填空)你能把|a﹣b|﹣|a+c|+|b﹣c|化简吗?能的话,求出最后结果.18.某工厂生产某种圆形零件,从中抽出5件进行检验,比规定直径长的毫米数记作正数,比规定直径短的毫米数记作负数,检查结果记录如下:零件12345误差-0.2-0.3+0.2-0.1+0.3根据你所学的知识说明什么样的零件的质量好,什么样的零件的质量差,这5件中质量最好的是哪一件?【答案与解析】一、选择题1.【答案】A2.【答案】B【解析】A错误,因为两个数的绝对值相等,这两个数可能互为相反数;B正确;C错误,因为0的绝对值是0,而0不是正数;D错误,因为一个数的绝对值是它本身的数除了正数还有0.3.【答案】C 【解析】因为一个数的绝对值是非负数,不可能是负数.所以C是错误的.4. 【答案】B【解析】因为-15<-9<0<6<15,所以当天平均气温最低的城市是哈尔滨.5. 【答案】D【解析】0大于负数.6.【答案】D【解析】解:∵点Q到原点的距离最远,∴点Q的绝对值最大.故选:D.7. 【答案】D【解析】若a为正数,则不满足|a| + a=0;若a为负数,则满足|a| + a=0;若a为0,也满足|a| + a=0. 所以a≤0,即a为负数或0.二、填空题8. 【答案】6.1829. 【答案】=;m=±n【解析】若m,n互为相反数,则它们到原点的距离相等,即绝对值相等;但反过来,m,n绝对值相等,则它们相等或互为相反数.10. 【答案】±2,-5【解析】| x |=2,则x=±2; | y |=5, y=±5.但由于x>y,所以x=±2,y=-511.【答案】±4, ±5【解析】画出数轴,从数轴上可以看出:在原点右侧,有4,5满足到原点的距离大于等于3.5,且小于6;在原点左侧有-4,-5满足到原点的距离大于等于3.5,且小于6.12.【答案】12【解析】绝对值最小的数是0,所以当2x-1=0,即x=12时,|2x-1|取到最小值0,同时|2x-1|+2也取到最小值.13. 【答案】a-2【解析】由图可知:a≥2,所以|a-2|=a-2.14. 【答案】≥;≤;<;任意有理数;a≤115. 【答案】-3,1三、解答题16.【解析】解:

    上传时间:2023-04-30 页数:3

    402人已阅读

    (5星级)

  • 精品解析:江苏省宿迁市2021年中考英语试题(解析版).doc

    江苏省宿迁市2021年初中学业水平考试英语(满分100分,考试时间120分钟)一、单项选择(共15小题;每小时1分,满分15分) 从A、B、C、D四个选项中,选出可以填入空白处的最佳选项。1. Kitty sometimes eats ________ orange or some grapes after lunch.A. anB. aC. theD. /【答案】A【解析】【详解】句意:基蒂有时午饭后吃一个橙子或一些葡萄。考查冠词用法。an不定冠词,表泛指,用于元音音素开头的单词前;a不定冠词,表泛指,用于辅音音素开头的单词前;the定冠词,表特指。orange是单数名词,此处指一个橙子,表泛指,且其以元音音素开头,故其前应加不定冠词an。故选A。2. The Communist Party of China will have its 100th birthday ________ July 1st, 2021.A. inB. onC. forD. at【答案】B【解析】【详解】句意:中国共产党将于2021年7月1日迎来100岁生日。考查介词辨析。in用于年/月/季节等泛指的时间前;at用于具体的钟点前;on用于具体的某一天前;for后接一段时间;根据July 1st, 2021可知,具体的一天前用介词on,故选B。3. —Mum, where is David?— He ________ to see the science fiction film Back to the future.A. is goingB. goesC. has goneD. was going【答案】C【解析】————【详解】句意:妈妈,大卫在哪?他去看科幻电影《回到未来》了。考查动词时态。大卫看电影的动作发生在过去,并且对上文两人之间的对话产生影响,故为现在完成时态,结构是have/has done。故选C。4. This years Beijing Music Awards will be covered ________ on Sunshine TV this Saturday.A. livelyB. aliveC. livingD. live【答案】D【解析】【详解】句意:今年的北京音乐大奖将于本周六在阳光卫视直播。考查词义辨析。lively活泼的,生动的;alive活着的;living活的,现存的;live现场直播的(地);根据语境可知,电视节目是现场直播的,故选D。5. Mary shut the window just now ________ she could keep the insects out.A. so thatB. whenC. tillD. after【答案】A【解析】【详解】句意:玛丽刚才关上了窗户,以便把昆虫挡在外面。考查连词。so that为了;when当……时;till直到;after在……之后;根据空格前后句可知,关窗户的目的是挡住昆虫,此处应用so that引导目的状语从句,故选A。6. —________ do you go to the school library?—Twice a week.A. How longB. How oftenC. How soonD. How much【答案】B【解析】————【详解】句意:你多久去一次校图书馆?一周两次。考查特殊疑问句。How long多长时间;How often多久一次;How soon多久以后;How much多少。根据答语Twice a week.可知,此处对频率提问,故用how often引导特殊疑问句。故选B。7. The policeman told the children ________ in the river. Its too dangerous!A. to not swimB. not to swimC. not swimD. not swimming【答案】B【解析】【详解】句意:警察告诉孩子们不要在河里游泳。太危险了!考查非谓语动词。tell sb. not to do sth.告诉某人不做某事。根据Its too dangerous!可知,警察告诉孩子不要在河里游泳。故选B。8. —Suzy, your room is really in a mess.—Sorry, Mum. Ill ________ right now.A. tidy upB. put upC. look upD. stay up【答案】A【解析】————【详解】句意:苏西,你的房间真是一团糟。对不起,妈妈。我马上收拾。考查动词短语。tidy up收拾,整理;put up张贴;look up查找;stay up熬

    上传时间:2023-05-09 页数:21

    401人已阅读

    (5星级)

  • 精品解析:福建省2021年中考数学试卷(解析版).doc

    2021年福建省中考数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1. 在实数,,0,中,最小的数是()A. B. 0C. D. 【答案】A【解析】【分析】根据正数大于0,0大于负数,两个负数,绝对值大的反而小.【详解】解:在实数,,0,中,,为正数大于0,为负数小于0,最小的数是:.故选:A.【点睛】本题考查了实数比较大小,解题的关键是:根据正数大于0,0大于负数,两个负数,绝对值大的反而小,可以直接判断出来.2. 如图所示的六角螺栓,其俯视图是()A. B. C. D. 【答案】A【解析】【分析】根据从上面看到的图形即可得到答案.【详解】从上面看是一个正六边形,中间是一个圆,故选:A.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.看得见部分的轮廓线要画成实线,看不见部分的轮廓线要画成虚线.3. 如图,某研究性学习小组为测量学校A与河对岸工厂B之间的距离,在学校附近选一点C,利用测量仪器测得.据此,可求得学校与工厂之间的距离等于()A. B. C. D. 【答案】D【解析】【分析】解直角三角形,已知一条直角边和一个锐角,求斜边的长.【详解】,.故选D.【点睛】本题考查解直角三角形应用,掌握特殊锐角三角函数的值是解题关键.4. 下列运算正确的是()A. B. C. D. 【答案】D【解析】【分析】根据不同的运算法则或公式逐项加以计算,即可选出正确答案.【详解】解:A:,故 A错误;B:,故 B错误;C:,故C错误;D:.故选:D【点睛】本题考查了整式的加减法法则、乘法公式、同底数幂的除法法则、积的乘方、幂的乘方等知识点,熟知上述各种不同的运算法则或公式,是解题的关键.5. 某校为推荐一项作品参加科技创新比赛,对甲、乙、丙、丁四项候选作品进行量化评分,具体成绩(百分制)如表: 项目作品甲乙丙丁创新性90959090实用性90909585如果按照创新性占60%,实用性占40%计算总成绩,并根据总成绩择优推荐,那么应推荐的作品是()A. 甲B. 乙C. 丙D. 丁【答案】B【解析】【分析】利用加权平均数计算总成绩,比较判断即可【详解】根据题意,得:甲:90×60%+90×40%=90;乙:95×60%+90×40%=93;丙:90×60%+95×40%=92;丁:90×60%+85×40%=88;故选B【点睛】本题考查了加权平均数的计算,熟练掌握加权平均数的计算方法是解题的关键.6. 某市2018年底森林覆盖率为63%.为贯彻落实绿水青山就是金山银山的发展理念,该市大力开展植树造林活动,2020年底森林覆盖率达到68%,如果这两年森林覆盖率的年平均增长率为x,那么,符合题意的方程是()A. B. C. D. 【答案】B【解析】【分析】设年平均增长率为x,根据2020年底森林覆盖率=2018年底森林覆盖率乘,据此即可列方程求解.【详解】解:设年平均增长率为x,由题意得:,故选:B.【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,列出方程即可.7. 如图,点F在正五边形的内部,为等边三角形,则等于()A. B. C. D. 【答案】C【解析】【分析】根据多边形内角和公式可求出∠ABC的度数,根据正五边形的性质可得AB=BC,根据等边三角形的性质可得∠ABF=∠AFB=60°,AB=BF,可得BF=BC,根据角的和差关系可得出∠FBC的度数,根据等腰三角形的性质可求出∠BFC的度数,根据角的和差关系即可得答案.【详解】∵是正五边形,∴∠ABC==108°,AB=BC,∵为等边三角形,∴∠ABF=∠AFB=60°,AB=BF,∴BF=BC,∠FBC=∠ABC-∠ABF=48°,∴∠BFC==66°,∴=∠AFB+∠BFC=126°,故选:C.【点睛】本题考查多边形内角和、等腰三角形的性质、等边三角形的性质,熟练掌握多边形内角和公式是解题关键.8. 如图,一次函数的图象过点,则不等式的解集是()A. B. C. D. 【答案】C【解析】【分析】先平移该一次函数图像,得到一次函数的图像,再由图像即可以判断出的解集.【详解】解:如图所示,将直线向右平移1个单位得到 ,该图像经过原点,由图像可知,在y轴右侧,直线位于x轴上方,即y>0,因此,当x>0时,,故选:C.【点睛】本题综合考查了函数图像的平移和利用一次函数图像求对应一元一次不等式的解集等,解决本题的关键是牢记一次函数的图像与一元一次不等式之间的关系,能从图像中得到对应部分的解集,本题蕴含了数形结合的思想方法等.9. 如图,为的直径,点P在的延长线上,与相切,切点分别为C,D.若,则等于(

    上传时间:2023-05-08 页数:29

    401人已阅读

    (5星级)

  • 初中数学9年级图形的相似和比例线段--巩固练习(提高).doc

    图形的相似和比例线段--巩固练习(提高)【巩固练习】一.选择题1. 在比例尺为1︰1 000 000的地图上,相距3cm的两地,它们的实际距离为()A.3 km B.30 km C.300 km D.3 000 km 2.(2015•兰州一模)若3a=2b,则的值为()A. B.  C.D. 3. 已知△ABC的三边长分别为6cm、7.5cm、9cm,△DEF的一边长为4cm,当△DEF的另两边的长是下列哪一组时,这两个三角形相似()A.2cm,3cm  B.4cm,5cm  C.5cm,6cm  D.6cm,7cm4.△ABC与△A1B1C1相似且相似比为,△A1B1C1与△A2B2C2相似且相似比为,则△ABC与△A2B2C2的相似比为 () A. B. C.或 D.5.下列两个图形:① 两个等腰三角形;② 两个直角三角形;③ 两个正方形;④ 两个矩形;⑤ 两个菱形;⑥ 两个正五边形.其中一定相似的有()A. 2组B. 3组 C. 4组D. 5组6.一个钢筋三角架三边长分别是20cm,50cm,60cm,现要做一个与其相似的三角架,只有长30cm,50cm的两根钢筋,要求以其中一根为一边,从另一根截下两段(允许有余料)做为其他两边,则不同的截法有( )A.一种B.两种 C.三种D.四种二. 填空题7. (2014•宜昌模拟)在一张比例尺为1:5 000 000的地图上,甲、乙两地相距70毫米,此两地的实际距离为_________.8. △ABC的三条边长分别为、2、,△A′B′C′的两边长分别为1和,且△ABC与△A′B′C′相似,那么△A′B′C′的第三边长为____________9. 如图:梯形ADFE相似于梯形EFCB,若AD=3,BC=4,则110.已知若若:=___. 11.如图:AB:BC=________,AB:CD=_________,BC:DE=________,AC:CD=__________,CD:DE=________. 12. 用一个放大镜看一个四边形ABCD,若四边形的边长被放大为原来的10倍,下列结论①放大后的∠B是原来∠B的10倍;②两个四边形的对应边相等;③两个四边形的对应角相等,则正确的有.三.综合题13.如果,一次函数经过点(-1,2),求此一次函数解析式.14. 如图,在矩形ABCD中,AB=2AD,线段EF=10,在EF上取一点M,分别以EM、MF为一边作矩形EMNH、MFGN,使矩形MFGN与矩形ABCD相似.令MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少? 15.(2014秋·滨江区期末)从一个矩形中剪去一个正方形,如图所示,若剩下的矩形与原矩形相似,求原矩形的长边与宽边比.2 【答案与解析】一、选择题1.【答案】B【解析】图上距离︰实际距离=1:1 000 000.2.【答案】A【解析】∵3a=2b, ∴,设a=2k,则b=3k,则故选A.3.【答案】C 【解析】 设△DEF的另两边的长分别为xcm,ycm,因为△ABC与△DEF相似,所以有下列几种情况: 当时,解得; 当时,解得; 当时,解得;所以选C.4.【答案】A 【解析】 相似比AB︰A1B1=,A1B1︰A2B2=,计算出AB︰A2B2.5.【答案】A【解析】只有两个正方形和正五边形相似.6.【答案】B二、填空题7.【答案】350千米.【解析】设甲、乙两地的实际距离为xmm,31:5000000=70:x,解得x=350000000.350000000mm=350千米.即甲乙两地的实际距离为350千米.8.【答案】 【解析】提示:△A′B′C′已知两边之比为1:,在△ABC中找出两边、,它们长度之比也为1︰,根据相似三角形对应边的对应关系,求出相似比.9.【答案】 .【解析】因为梯形ADFE相似于梯形EFCB,所以,即EF=,所以10.【答案】11.【答案】1:3;1:2;1:2;2:1;1:3.12.【答案】 ③三、解答题13.【解析】∵∴∴则分两种情况:(1),即, (2),即所以当,过点(-1,2)时,当,过点(-1,2)时,.414.【解析】∵矩形MFGN与矩形ABCD相似当时,S有最大值,为.15.【解析】根据矩形相似的性质找出相应的解析式求解.设原矩形的长为x,宽为y,则剩下矩形的长为y,宽为x-

    上传时间:2023-04-30 页数:5

    401人已阅读

    (5星级)

  • 初中数学9年级相似多边形及位似--巩固练习.doc

    相似多边形及位似--巩固练习【巩固练习】一. 选择题1.下面给出了相似的一些命题:(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相似;(5)正六边形都相似;其中正确的有()A.2个 B.3个C.4个 D.5个2.下列说法错误的是( ). A.位似图形一定是相似图形.B.相似图形不一定是位似图形. C.位似图形上任意一对对应点到位似中心的距离之比等于相似比. D.位似图形中每组对应点所在的直线必相互平行.3.下列说法正确的是( ) A.分别在ABC的边AB、AC的反向延长线上取点D、E,使DE∥BC,则ADE 是ABC放大后的图形.B.两位似图形的面积之比等于相似比. C.位似多边形中对应对角线之比等于相似比. D.位似图形的周长之比等于相似比的平方.4.平面直角坐标系中,有一条鱼,它有六个顶点,则( ) A.将各点横坐标乘以2,纵坐标不变,得到的鱼与原来的鱼位似. B.将各点纵坐标乘以2,横坐标不变,得到的鱼与原来的鱼位似. C.将各点横、纵坐标都乘以2,得到的鱼与原来的鱼位似. D.将各点横坐标乘以2,纵坐标乘以,得到的鱼与原来的鱼位似.5.(2015•杭州模拟)如图,四边形ABCD∽四边形A1B1C1D1,AB=12,CD=15,A1B1=9,则边C1D1的长是()A. 10 B. 12C.D. 6.如果点C为线段AB的黄金分割点,且AC>BC,则下列各式不正确的是()A. AB:AC=AC:BCB. AC=512ABC.AB=512AC D.BC≈0.618AB7.已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=()A. 512B. 512 C.3D.21二. 填空题8. 如果两个位似图形的对应线段长分别为3cm和5cm,且较小图形周长为30cm,则较大图形周长为___ ___. 9.已知ABC,以点A为位似中心,作出ADE,使ADE是ABC放大2倍的图形,则这样的图形可以作出______个,它们之间的关系是__________.10.如图,以点O为位似中心,将五边形ABCDE放大后得到五边形ABCDE,已知OA=10cm,OA′=20cm,则五边形ABCDE的周长与五边形ABCDE的周长的比值是__________.   11. △ABC中,D、E分别在AB、AC上,DE∥BC,△ADE是△ABC缩小后的图形.若DE把△ABC的面积分成相等的两部分,则AD:AB=________.12.(2015春•庆阳校级月考)图中的两个四边形相似,则x+y=,α=.13.如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1,取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分,取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图(3)中阴影部分,如此下去…,则正六角星形A4F4B4D4C4E4的面积为__________________.214. 如图,△ABC中,AB=AC=4,∠BAC=36°,∠ABC的平分线与AC边的交点D为边AC的黄金分割点(AD>DC),则BC=______________.三. 综合题15.如图,D、E分别AB、AC上的点.  (1)如果DE∥BC,那么△ADE和 △ABC是位似图形吗?为什么? (2)如果△ADE和 △ABC是位似图形,那么DE∥BC吗?为什么? 16.(2014•南通)如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EB,GD.(1)求证:EB=GD;(2)若∠DAB=60°,AB=2,AG=,求GD的长.317. 如图1,矩形ODEF的一边落在矩形ABCO的一边上,并且矩形ODEF∽矩形ABCO,其相似比为1:4,矩形ABCO的边AB=4,BC=43.(1)求矩形ODEF的面积;(2)将图1中的矩形ODEF绕点O逆时针旋转一周,连接EC、EA,△ACE的面积是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,请说明理由.【答案与解析】一、选择题1.【答案】B【解析】(1)菱形的角不一定对应相等,故错误;(2)(3)(5)符合相似的定义,故正确;(4)对应边的比不一定相等.故错误. 故正确的是:(2)(3)(5).故选B.2.【答案】D.3.【答

    上传时间:2023-04-30 页数:7

    401人已阅读

    (5星级)

  • 初中7年级(上册)《整式的加减》全章复习与巩固(提高)知识讲解.doc

    《整式的加减》全章复习与巩固(提高)知识讲解【学习目标】1.理解并掌握单项式与多项式的相关概念;2.理解整式加减的基础是去括号和合并同类项,并会用整式的加减运算法则,熟练进行整式的加减运算、求值;3.深刻体会本章体现的主要的数学思想-整体思想.【知识网络】【要点梳理】要点一、整式的相关概念 1.单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式. 要点诠释:(1)单项式的系数是指单项式中的数字因数.(2)单项式的次数是指单项式中所有字母的指数和. 2.多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.要点诠释:(1)在多项式中,不含字母的项叫做常数项.(2)多项式中次数最高的项的次数,就是这个多项式的次数.(3)多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式.3. 多项式的降幂与升幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列.另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列.要点诠释:(1)利用加法交换律重新排列时,各项应连同它的符号一起移动位置;(2)含有多个字母时,只按给定的字母进行降幂或升幂排列.4.整式:单项式和多项式统称为整式.要点二、整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.要点诠释:辨别同类项要把准两相同,两无关:(1)两相同是指:①所含字母相同;②相同字母的指数相同;(2)两无关是指:①与系数无关;②与字母的排列顺序无关.2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.要点诠释:合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持1不变.3.去括号法则:括号前面是+,把括号和它前面的+去掉后,原括号里各项的符号都不改变;括号前面是-,把括号和它前面的-号去掉后,原括号里各项的符号都要改变.4.添括号法则:添括号后,括号前面是+,括号内各项的符号都不改变;添括号后,括号前面是-,括号内各项的符号都要改变.5.整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项.【典型例题】类型一、整式的相关概念1.(2016春•新泰市期中)下列说法正确的是()A.1﹣xy是单项式 B.ab没有系数C.﹣5是一次一项式 D.﹣a2b+ab﹣abc2是四次三项式【思路点拨】根据多项式是几个单项式的和,数字因数是单项式的系数,字母指数和是单项式的次数,多项式中次数最高的单项式的次数是多项式的次数,每个单项式是多项式的项,可得答案.【答案】D.【解析】解:A、1﹣xy是多项式,故A错误;B、ab的系数是1,故B错误;C、﹣5是单项式,故C错误;D、﹣a2b+ab﹣abc2是四次三项式,故D正确;故选:D.【总结升华】本题考查了单项式,单项式的系数,多项式,多项式的次数等基本概念,关键是对这些基本概念一定要熟悉.举一反三:【变式1】(2014•佛山)多项式2a2b﹣ab2﹣ab的项数及次数分别是()A.3,3 B.3,2C.2,3D.2,2【答案】A2a2b﹣ab2﹣ab是三次三项式,故次数是3,项数是3.【变式2】若多项式是关于的二次三项式,则,,这个二次三项式为.【答案】类型二、同类项及合并同类项2.若是同类项,求出m, n的值,并把这两个单项式相加.【答案与解析】解:因为是同类项,2所以 解得当且时,.【总结升华】同类项的定义中强调,除所含字母相同外,相同字母的指数也要相同.其中,常数项也是同类项.合并同类项时,若不是同类项,则不需合并. 举一反三:【变式】合并同类项.(1);(2).【答案】 (1)原式=(2)原式. 类型三、去(添)括号3.化简.【答案与解析】解:原式=.【总结升华】根据多重括号的去括号法则,可由里向外,也可由外向里逐层推进,在计算过程中要注意符号的变化.若括号前是-号,在去括号时,括号里各项都应变号,若括号前有数字因数,应把数字因数乘到括号里,再去括号.举一反三:【变式1】下列去括号正确的是().A.B.C.3D.【答案】D【变式2】先化简代数式,然后选取一个使原式有意义的a的值代入求值.【答案】.当时,原式=0-0-4=-4.【变式3】(1)(x+y)2-10x-10y+25=(x+y)2-10(______)+25;(2)(a-b+c-d)(a+b-c-d)=[(a-d

    上传时间:2023-04-30 页数:6

    401人已阅读

    (5星级)

  • 初中7年级(上册)角(提高)巩固练习.doc

    【巩固练习】一、选择题1.关于平角、周角的说法正确的是().A.平角是一条直线. B.周角是一条射线C.反向延长射线OA,就成一个平角. D.两个锐角的和不一定小于平角2.在时刻2∶15时,时钟上的时针与分针间的夹角是( )A.22.5° B.85° C.75 ° D.60°3.如图所示,将一幅三角板叠在一起,使直角的顶点重合于点O,则∠AOB+∠DOC的值()A.小于180°B.等于180°C.大于180°D.不能确定4.(2016•朝阳区校级模拟)下面等式成立的是()A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44°D.41.25°=41°15′5.(2015•东莞模拟)一个角的余角比这个角的补角的一半小40°,则这个角为( )度.A.80°B.70° C.85° D.75°6. 如图,OB、OC是∠AOD的任意两条射线,OM平分∠AOB,ON平分∠COD,若∠MON=α,∠BOC=β,则表示∠AOD的式子是()A.2α-β B.α-βC.α+βD.以上都不正确7.书店、学校、食堂在同一个平面上,分别用点A、B、C来表示,书店在学校的北偏西30°,食堂在学校的南偏东15°,则平面图上的∠ABC应该是().A.65°B.35°C.165°D.135°8.如图将长方形纸片ABCD的角C沿着GF折叠(点F在BC上,不与B、C重合),使得点C落在长方形内部点E处,若FH平分∠BFE,则关于∠GFH的度数α说法正确的是( )A.90°﹤α﹤180° B. 0°﹤α﹤90°C. α= 90° 1ABCDGEFH D.α随折痕GF位置的变化而变化二、填空题9.把一个平角16等分,则每份(用度、分、秒表示)为_______.10.如图所示,∠AOC与∠BOD都是直角,且∠AOB:∠AOD=2:11,则∠AOB=_______.11.(2015春•高密市期末)从A沿北偏东60°的方向行驶到B,再从B沿南偏西20°的方向行驶到C,则∠ABC=度.12. 如图,已知直线AB和CD相交于点O,∠COE是直角,OF平分∠AOE.(1)写出∠AOC与∠BOD的大小关系:,判断的依据是.(2)若∠COF=35°,∠BOD=.13.如图,在一个正方体的两个面上画了两条对角线AB,AC,那么这两条对角线的夹角等于 . 14.如图,在AOE的内部从O引出3条射线,那么图中共有__________个角;如果引出5条射线,有__个角;如果引出n条射线,有 __________个角.三、解答题15.(2016春•曹县校级月考)计算:(1)18°13′×5.(2)27°26′+53°48′.(3)90°﹣79°18′6″.216.如图所示,已知∠AOC=2∠BOC,∠AOC的余角比∠BOC小30°.(1)求∠AOB的度数.(2)过点O作射线OD,使得∠AOC=4∠AOD,请你求出∠COD的度数17. 如图,已知∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.(1)求∠EOF的度数;(2)若∠AOC=x°,∠EOF=y°.则请用x的代数式来表示y;(3)如果∠AOC+∠EOF=156°,则∠EOF是多少度?18.(2014秋•罗平县校级期末)钟面上的角的问题.(1)3点45分,时针与分针的夹角是多少?(2)在9点与10点之间,什么时候时针与分针成100°的角?【答案与解析】一、选择题1.【答案】C 【解析】角与直线、射线、线段是不同的几何图形,不能混淆。2.【答案】A 【解析】().16151530222523.【答案】B 【解析】∠AOB+∠DOC=(∠AOC+∠BOC)+( 90°-∠BOC) =90°+90°=180°4.【答案】D【解析】解:A、83.5°=83°50′,错误;B、37°12′=37.48°,错误;C、24°24′24″=24.44°,错误;3OBCEAFD、41.25°=41°15′,正确.故选D.5.【答案】A【解析】设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),由题意得,(180°﹣x)﹣(90°﹣x)=40°,解得x=80°.6. 【答案】A7. 【

    上传时间:2023-04-30 页数:6

    401人已阅读

    (5星级)

  • 知识补充:地球的内部构造(初中数学7年级下册).doc

    地球的内部构造地球本身就是一座巨大的天然储热库。所谓地热能就是地球内部蕴藏的热能。有关地球内部的知识是从地球表面的直接观察及钻井的岩样和火山喷发、地震等资料推断而得到的。根据现在的认识,地球的构成是这样的:地球是一个巨大的实心椭球体,表面积约为51000X 104km,体积约为10833 x 108km3,赤道半径为6378km, 极半径为6357km。地球的构造好象是一只半熟的鸡蛋,主要分为三层,在约2800km厚、温度在1000°C的铁-镁硅酸盐地幔上有一薄层(厚约30km)铝-硅酸盐地壳,它的厚度各处不一,介于10~70km之间,陆地上平均为30~40km,高山底下可达60~70km,海底下仅为10km左右;地幔下面是液态铁-镍地核,其内还含有一个固态的内核,温度在2000~5000℃之间,外核深2900~5100km, 内核深5100km以下至地心。在6~70km厚的表层地壳和地幔之间有个分界面,通常称之为莫霍不连续面。莫霍界面会反射地震波。从地表到深100~200km为刚性较大的岩石圈。由于地球内圈和外圈之间存在较大的温度梯度,所以其间有黏性物质不断循环。地球内部各区段情况如下表所示。 区段状态结合带深度[km]温度[°C]密度[g/cm3]成分区段地壳  00-50  岩石圈刚性板块 10-20 2.7钠、钾、铝硅酸盐 莫霍6-70500-100030铁、钙、镁、铝硅酸盐地幔 固态       固相线100-2001200   黏性物质   3.6-4.4铁、镁硅酸盐软流圈 固相线7001900  刚性地幔     地幔 固相线280037004.5-5.5铁、镁、硅酸盐和/或氧化物地核液态     地核 固相线5500430010-12铁、镍固态      中心63404500 铁、镍大洋壳层厚约6~10km,由玄武岩构成,大洋壳层会延伸到大陆壳层下面。大陆壳层则是由密度较小的钠钾铝一硅酸盐的花岗石组成,典型厚度约为35km,但是在造山地带其厚度可能达70km。地壳好像一个筏放在刚性岩石图上,岩石围又漂浮在截性物质构成的软流圈上。由于软流圈中的对流作用,会使大陆壳筏向各个方向移动,从而会导致某一大陆板块与其他大陆板块或大洋板块碰撞或分离。它们就是造成火山喷发、造山运动、地震等地质活动的原因。在图1中的箭头表示了板块和岩石围的运动及其下面黏性物质的热对流。地幔中的对流把热能从地球内部传到近地壳的表面地区,在那里热能可能绝热储存达百万年之久。虽然这里储热区的深度已大大超过了目前钻探技术所能达到的深度,但由于地壳表层中含有游离水,这些水有可能将热储区的热能带到地表附近,或穿出地面而形成温泉特别在所谓地质活动区更是如此。

    上传时间:2023-04-30 页数:2

    400人已阅读

    (5星级)

  • 《余角与补角》基础练习1(初中数学7年级下册).doc

    2.1余角与补角一、选择题1.下列说法正确的是( )A.有公共顶点的两个角是对顶角 B.有公共定点且有一条边在同一直线上的两个角是对顶角 C.两边互为反向延长线的两个角是对顶角 D.有公共顶点且相等的两个角是对顶角2.一个锐角的余角( )A.一定是钝角B.一定是锐角C.可能是锐角,也可能是钝角D.以上答案都不对3.若两个角互补,则( )A.这两个角都是锐角B.这两个角都是钝角C.这两个角一个是锐角,一个是钝角D.以上答案都不对4.如图直线AB和CD相交于O,,∴,其推理依据是( )A.同角的余角相等B.等角的余角相等C.同角的补角相等D.等角的补角相等5.互为补角的两个角的度数之比为3:2,则这两个角分别是( )A.108°和72°B.95°和85°C.100°和80°D.110°和70° 二、判断题(1)一个锐角的补角,总是大于这个角的余角;( )(2)一个角的补角,总是大于这个角;( )(3)相等的角,一定是对顶角;( )(4)一个锐角的余角,总是锐角;( )(5)一个角的补角,总是钝角;( )(6)锐角一定小于余角.( )三、填空题1.如果两个角的和是_________,称这两个角互余;2.如果两个角的和是平角,称这两个角______;3.同角的余角______,同角的补角______,对顶角______;4.两条直线相交所构成的角中,如果有一个角是直角,那么其余的3个角________5.如图,直线相交于一点O,对顶角一共有__________对; 四、解答题1.如图,直线AB、CD相交于O,,求的度数.2.如图所示,直线相交于点O,若已知,你能求出的度数吗?3.如图,三条直线相交于一点O,求的值.参考答案一、选择题1.C2.B3.D4.D5.A二、判断题(1)√(2)×(3)×(4)√(5)×(6)×三、填空题1.直角 2.互为补角3.相等、相等、相等 4.都是直角5.6四、解答题1.75°2..3.180°(提示:和是对顶角,所以,且,故

    上传时间:2023-04-30 页数:3

    400人已阅读

    (5星级)

  • 中考数学总复习:数与式综合复习--知识讲解(提高).doc

    中考总复习:数与式综合复习—知识讲解(提高)【考纲要求】(1) 借助数轴理解相反数和绝对值的意义,会求有理数的倒数、相反数与绝对值.理解有理数的运算律,并能运用运算律简化运算;(2)了解平方根、算术平方根、立方根的概念,了解无理数和实数的概念,知道实数与数轴上的点一一对应;会用根号表示数的平方根、立方根.了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;(3)了解整式、分式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算.会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算.【知识网络】【考点梳理】考点一、实数的有关概念、性质1.实数及其分类实数可以按照下面的方法分类:1实数还可以按照下面的方法分类:要点诠释:整数和分数统称有理数.无限不循环小数叫做无理数. 有理数和无理数统称实数.2.数轴规定了原点、正方向和单位长度的直线叫做数轴.每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.实数和数轴上的点是一一对应的关系.要点诠释:实数和数轴上的点的这种一一对应的关系是数学中把数和形结合起来的重要基础.3.相反数实数a和-a叫做互为相反数.零的相反数是零.一般地,数轴上表示互为相反数的两个点,分别在原点的两旁,并且离原点的距离相等.要点诠释:两个互为相反数的数的运算特征是它们的和等于零,即如果a和b互为相反数,那么a+b=0;反过来,如果a+b=0,那么a和b互为相反数.4.绝对值一个实数的绝对值就是数轴上表示这个数的点与原点的距离.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零,即如果a>0,那么|a|=a;如果a<0,那么|a|=-a;如果a=0,那么|a|=0.要点诠释:从绝对值的定义可以知道,一个实数的绝对值是一个非负数.5.实数大小的比较(1)在数轴上表示两个数的点,右边的点所表示的数较大.(2)正数都大于0;负数都小于0,两个负数绝对值大的那个负数反而小.(3)对于实数要点诠释:常用方法:①数轴图示法;②作差法;③作商法;④平方法等.6.有理数的运算(1)运算法则(略).(2)运算律:加法交换律a+b=b+a;加法结合律(a+b)+c=a+(b+c);乘法交换律ab=ba;乘法结合律(ab)c=a(bc);2分配律a(b+c)=ab+ac.(3)运算顺序:在加、减、乘、除、乘方、开方这六种运算中,加、减是第一级运算,乘、除是第二级运算,乘方、开方是第三级运算.在没有括号的算式中,首先进行第三级运算,然后进行第二级运算,最后进行第一级运算,也就是先算乘方、开方,再算乘、除,最后算加、减.算式里如果有括号,先进行括号内的运算.如果只有同一级运算,从左到右依次运算.7.平方根如果x2=a,那么x就叫做a的平方根(也叫做二次方根).要点诠释:正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根.8.算术平方根正数a的正的平方根,叫做a的算术平方根.零的算术平方根是零.要点诠释: 从算术平方根的概念可以知道,算术平方根是非负数.9.近似数及有效数字近似地表示某一个量准确值的数,叫做这个量准确值的近似数.一个近似数,四舍五入到哪一位就说这个近似数精确到哪一位.这时,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫这个数的有效数字.10.科学记数法把一个数记成±a×的形式(其中n是整数,a是大于或等于1而小于10的数),称为用科学记数法表示这个数.考点二、二次根式、分式的相关概念、性质1.二次根式的概念形如(a≥0) 的式子叫做二次根式.2.最简二次根式和同类二次根式的概念最简二次根式是指满足下列条件的二次根式:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.要点诠释:把分母中的根号化去,分式的值不变,叫做分母有理化.两个含有二次根式的代数式相乘,若它们的积不含二次根式,则这两个代数式互为有理化因式.常用的二次根式的有理化因式:(1)互为有理化因式;(2)互为有理化因式;一般地互为有理化因式;(3)互为有理化因式;一般地互为有理化因式.3.二次根式的主要性质(1)0(0)aa;(2)2(0)aaa;3(3);(4)积的算术平方根的性质:;(5)商的算术平方根的性质:.4.二次根式的运算(1)二次根式的

    上传时间:2023-04-30 页数:12

    400人已阅读

    (5星级)

  • 中考数学总复习:投影与视图--巩固练习.doc

    中考总复习:投影与视图—巩固练习【巩固练习】一、选择题1.下面四个几何体中,俯视图不是圆形的几何体的个数是( ).A.1个B.2个C.3个 D.4个2.如图,形状相同、大小相等的两个小木块放在一起,其俯视图如图所示,则其主视图是( )3.如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间函数关系的图象大致为() 4.(2015春•杭州校级月考)有一个底面为正三角形的直三棱柱,三视图如图所示,则这个直棱柱的侧面积为()A.24B.8C.12 D.24+85.如图,是由若干个同样大小的立方体搭成的几何体的俯视图,小正方形中的数字表示该位置立方体的个数,则这个几何体的主视图是()16.如图是一个包装纸盒的三视图(单位:cm),则制作一个纸盒所需纸板的面积是( )A. B. C.D.二、填空题7.(2015•杭州模拟)一个直棱柱,主视图是边长为2的正方形、俯视图是边长为2的正三角形,则左视图的面积为.8.如图,上体育课,甲、乙两名同学分别站在C,D的位置时,乙的影子恰好在甲的影子里边,已知甲、乙同学相距1米.甲身高1.8米,乙身高1.5米,则甲的影长是_________米. 第8题第9题第10题9.如图,小明在A时测得某树影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为________m.10.如图是由大小相同的小正方体组成的简单几何体的主视图和左视图,那么组成这个几何体的小正方体的个数最多为__________.11.如图是由棱长为1的正方体搭成的积木三视图,则图中棱长为1的正方体的个数是_________.212.如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕点A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设垂直于地面时的影长为AC(假定AC>AB),影长的最大值为m,最小值为n,那么下列结论:①m>AC;②m=AC;③n=AB;④影子的长度先增大后减小,其中正确结论的序号是___ _____.三、解答题13.学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时间,身高为1.6m的小明(AB)的影子BC长是3m,而小颖(EH)刚好在路灯灯泡的正下方H点,并测得HB=6m.(1)请在图中画出形成影子的光线,并确定路灯灯泡所在的位置G;(2)求路灯灯泡的垂直高度GH;(3)如果小明沿线段BH向小颖(点H)走去,当小明走到BH中点B1处时,求其影子B1C1的长;当小明继续走剩下路程的到B2处时,求其影子B2C2的长;当小明继续走剩下路程的到B3处,……按此规律继续走下去,当小明走剩下路程的到Bn处时,其影子的长为________m(直接用含n的代数式表示). 14.(2014•东海县一模)现在各地房产开发商,为了获取更大利益,缩短楼间距,以增加住宅楼栋数.合肥市某小区正在兴建的若干幢20层住宅楼,国家规定普通住宅层高宜为2.80米.如果楼间距过小,将影响其他住户的采光(如图所示,窗户高1.3米).(1)合肥的太阳高度角(即正午太阳光线与水平面的夹角):夏至日为81.4度,冬至日为34.88度.为了不影响各住户的采光,两栋住宅楼的楼间距至少为多少米?(2)有关规定:平行布置住宅楼,其建筑间距应不小于南侧建筑高度的1.2倍;按照此规定,是否影响北侧住宅楼住户的全年的采光?若有影响,试求哪些楼层的住户受到影响?(本题参考值:3sin81.4°=0.99,cos81.4°=0.15,tan81.4°=6.61; sin34.88°=0.57,cos34.88°=0.82,tan34.88°=0.70)15.某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB的影长AC为12米,并测出此时太阳光线与地面成30°角.(≈1.4,≈1.7) (1)求出树高AB; (2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.(用图(2)解答)①求树与地面成45°角时的影长;②求树的最大影长.16.如图(1)是一个三棱柱包装盒,它的底面是边长为10cm的正三角形,三个侧面都是矩形,现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABC

    上传时间:2023-04-30 页数:8

    400人已阅读

    (5星级)

  • 中考数学总复习:一元一次不等式(组)--巩固练习.doc

    中考总复习:一元一次不等式(组)—巩固练习【巩固练习】一、选择题1. 不等式-x-5≤0的解集在数轴上表示正确的是() A BCD2.若实数a>1,则实数M=a,N=23a,P=213a的大小关系为( )A.P>N>M B.M>N>PC.N>P>M D.M>P>N3.如图所示,一次函数y=kx+b的图象经过A,B两点,则不等式kx+b>0的解集是( )A.x>0 B.x>2 C.x>-3D.-3<x<2 4.如果不等式213x+1>13ax的解集是x<53,则a的取值范围是( )A.a>5 B.a=5C.a>-5 D.a=-5 5.(2015•杭州模拟)已知整数x满足是不等式组,则x的算术平方根为()A.2B.±2C.D.46.不等式组3(2)423xaxxx无解,则a的取值范围是( )A.a<1 B.a≤1 C.a>1 D.a≥1二、填空题7.若不等式ax<a的解集是x>1,则a的取值范围是______.8.(2014春•北京校级月考)若(m﹣1)x|2m﹣1|﹣8>5是关于x的一元一次不等式,则m=.9.已知3x+4≤6+2(x-2),则│x+1│的最小值等于__ ____.10.若不等式a(x-1)>x-2a+1的解集为x<-1,则a的取值范围是____ __.11.满足22x≥213x的x的值中,绝对值不大于10的所有整数之和等于______.112.有10名菜农,每个可种甲种蔬菜3亩或乙种蔬菜2亩,已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元,若要总收入不低于15.6万元,则最多只能安排_______人种甲种蔬菜.三、解答题13.解下列不等式(组),并把解集在数轴上表示出来.(1)x-3≥354x.(2)解不等式组 14. 若,求的取值范围.15.(2015•东莞)某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1)求商场销售A、B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A、B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?16. 如图所示,一筐橘子分给若干个儿童,如果每人分4个,则剩下9个;如果每人分6个,则最后一个儿童分得的橘子数少于3个,问共有几个儿童,分了多少个橘子?【答案与解析】一、选择题1.【答案】B;【解析】解不等式得x ≥-5,故选B.2.【答案】D;2【解析】方法一:取a=2,则M=2,N=43,P=53,由此知M>P>N,应选D.方法二:由a>1知a-1>0.又M-P=a-213a=13a>0,∴M>P;P-N=213a-23a=13a>0,∴P>N.∴M>P>N,应选D.3.【答案】C;【解析】不等式kx+b>0的解集 即y>0的解集,观察图象得x>-3. 4.【答案】B;【解析】化简原不等式得(2-a)x>-5,因为原不等式解集是x<53,所以2-a<0,且, 解得a>2,且a=5.5.【答案】A;【解析】解:,解①得:x>3,解②得:x<5,则不等式组的解集是:3<x<5.则x=4.x的算术平方根是:2.故选A.6.【答案】B;【解析】 解不等式组得x≥1,x<a, 因为不等式组无解,所以a≤1.二、填空题7.【答案】a<0;【解析】结果不等号的方向改变了,故a<0.8.【答案】0;【解析】由(m1﹣)x|2m1|﹣8﹣>5是关于x的一元一次不等式,得,解得m=0,故答案为:0.9.【答案】1;【解析】解不等式得x≤-2,当x=-2时,│x+1│有最小值,有最小值等于1.10.【答案】a<1;【解析】解不等式得(a-1)x>1-a, 因为不等式a(x-1)>x-2a+1的解集为x<-1,所以a-1<0,即a<1.311.【答案】-19; 【解析】解不等式得x≤8,绝对值不大于10的所有整数之和为(-9)+(-10)=-19.12.【答案】4.三、解答题13.【答案与解析】 (

    上传时间:2023-04-30 页数:5

    400人已阅读

    (5星级)

  • 初中数学9年级投影与视图—知识讲解.doc

    投影与视图—知识讲解 【学习目标】1.以分析实际例子为背景,认识投影和视图的基本概念和基本性质;2.通过讨论简单立体图形(包括相应的表面展开图)与它的三视图的相互转化,经历画图、识图等过程,分析立体图形和平面图形之间的联系,提高空间想象能力;3.通过制作立体模型的学习,在实际动手中进一步加深对投影和视图知识的认识,在实践活动中培养实际操作能力.【要点梳理】要点一、平行投影1.一般地,用光线照射物体,在某个平面(地面或墙壁等)上得到的影子,叫做物体的投影.只要有光线,有被光线照到的物体,就存在影子.太阳光线可看做平行的,象这样的光线照射在物体上,所形成的投影叫做平行投影.由此我们可得出这样两个结论:(1)等高的物体垂直地面放置时,如图1所示,在太阳光下,它们的影子一样长.(2)等长的物体平行于地面放置时,如图2所示,它们在太阳光下的影子一样长,且影长等于物体本身的长度.2. 物高与影长的关系(1)在不同时刻,同一物体的影子的方向和大小可能不同.不同时刻,物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚,物体影子的指向是:西→西北→北→东北→东,影长也是由长变短再变长.(2)在同一时刻,不同物体的物高与影长成正比例.即:.利用上面的关系式可以计算高大物体的高度,比如旗杆的高度等.注意:利用影长计算物高时,要注意的是测量两物体在同一时刻的影长.要点诠释:1.平行投影是物体投影的一种,是在平行光线的照射下产生的.利用平行投影知识解题要分清不同时刻和同一时刻.2.物体与影子上的对应点的连线是平行的就说明是平行光线.要点二、中心投影若一束光线是从一点发出的,像这样的光线照射在物体上所形成的投影,叫做中心投影.这个点就是中心,相当于物理上学习的点光源.生活中能形成中心投影的点光源主要有手电筒、路灯、台灯、投影仪的灯光、放映机的灯光等.相应地,我们会得到两个结论:(1)等高的物体垂直地面放置时,如图1所示,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.1 (2)等长的物体平行于地面放置时,如图2所示.一般情况下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.在中心投影的情况下,还有这样一个重要结论:点光源、物体边缘上的点以及它在影子上的对应点在同一条直线上,根据其中两个点,就可以求出第三个点的位置.要点诠释:光源和物体所处的位置及方向影响物体的中心投影,光源或物体的方向改变,则该物体的影子的方向也发生变化,但光源、物体的影子始终分离在物体的两侧.要点三、中心投影与平行投影的区别与联系1.联系:(1)中心投影、平行投影都是研究物体投影的一种,只不过平行投影是在平行光线下所形成的投影,通常的平行光线有太阳光线、月光等,而中心投影是从一点发出的光线所形成的投影,通常状况下,灯泡的光线、手电筒的光线等都可看成是从某一点发射出来的光线.(2)在平行投影中,同一时刻改变物体的方向和位置,其投影也跟着发生变化;在中心投影中,同一灯光下,改变物体的位置和方向,其投影也跟着发生变化.在中心投影中,固定物体的位置和方向,改变灯光的位置,物体投影的方向和位置也要发生变化.2.区别:(1)太阳光线是平行的,故太阳光下的影子长度都与物体高度成比例;灯光是发散的,灯光下的影子与物体高度不一定成比例.(2)同一时刻,太阳光下影子的方向总是在同一方向,而灯光下的影子可能在同一方向,也可能在不同方向.要点诠释:在解决有关投影的问题时必须先判断准确是平行投影还是中心投影,然后再根据它们的具体特点进一步解决问题.要点四、正投影 正投影的定义: 如图所示,图(1)中的投影线集中于一点,形成中心投影;图(2)(3)中,投影线互相平行,形成平行投影;图(2)中,投影线斜着照射投影面;图(3)中投影线垂直照射投影面(即投影线正对着投影面),我们也称这种情形为投影线垂直于投影面.像图(3)这样,投影线垂直于投影面产生的投影叫做正投影.(1)线段的正投影分为三种情况.如图所示.2 ①线段AB平行于投影面P时,它的正投影是线段A1B1,与线段AB的长相等;②线段AB倾斜于投影面P时,它的正投影是线段A2B2,长小于线段AB的长;③线段AB垂直于投影面P时,它的正投影是一个点.(2)平面图形正投影也分三种情况,如图所示.①当平面图形平行于投影面Q时,它的正投影与这个平面图形的形状、大小完全相同,即正投影与这个平面图形全等;②当平面图形倾斜于投影面Q时,平面图形的正投影与这个平

    上传时间:2023-04-30 页数:8

    400人已阅读

    (5星级)

客服

客服QQ:

2505027264


客服电话:

18182295159(不支持接听,可加微信)

微信小程序

微信公众号

回到顶部