冲刺:几何综合问题(基础)一、选择题1.(2016•天水)如图,边长为2的等边△ABC和边长为1的等边△A′B′C′,它们的边B′C′,BC位于同一条直线l上,开始时,点C′与B重合,△ABC固定不动,然后把△A′B′C′自左向右沿直线l平移,移出△ABC外(点B′与C重合)停止,设△A′B′C′平移的距离为x,两个三角形重合部分的面积为y,则y关于x的函数图象是() A. B. C. D.2. 如图,将直角三角形ABC沿着斜边AC的方向平移到△DEF的位置(A、D、C、F四点在同一条直线上).直角边DE交BC于点G.如果BG=4,EF=12,△BEG的面积等于4,那么梯形ABGD的面积是()A. 16 B. 20 C. 24 D. 28二、填空题3.(2016•海淀区二模)据传说,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度.如图所示,木杆EF的长为2m,它的影长FD为3m,测得OA为201m,则金字塔的高度BO为______ m.4. 如图,线段AB=8cm,点C是AB上任意一点(不与点A、B重合),分别以AC、BC为1斜边在AB的同侧作等腰直角三角形(△AMC和△CNB),则当BC=_____________cm时,两个等腰直角三角形的面积和最小.三、解答题5. 有一根直尺的短边长2cm,长边长10cm,还有一块锐角为45°的直角三角形纸板,它的斜边长12cm.如图①,将直尺的短边DE与直角三角形纸板的斜边AB重合,且点D与点A重合; 将直尺沿AB方向平移(如图②),设平移的长度为xcm( 0≤x≤10 ),直尺和三角形纸板的重叠部分(图中阴影部分)的面积为Scm2.(1)当x=0时(如图①),S=________;(2)当0<x≤4时(如图②),求S关于x的函数关系式;(3)当4<x<6时,求S关于x的函数关系式;(4)直接写出S的最大值. 6. 问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)特例探究:如图②,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证:△ABD≌△CAE.归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数. 7. 如图正三角形ABC的边长为6cm,⊙O的半径为rcm,当圆心O从点A出发,沿着线路AB-BC-CA运动,回到点A时,⊙O随着点O的运动而移动.2⑴若r=cm,求⊙O首次与BC边相切时,AO的长;⑵在⊙O移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同情况下r的取值范围及相应的切点的个数;⑶设⊙O在整个移动过程中,在△ABC内部,⊙O未经过的部分面积为S,在S>0时,求关于r的函数解析式,并写出自变量r的取值范围. 8. (2015•德州)(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°,求证:AD•BC=AP•BP.(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=5,点P以每秒1个单位长度的速度,由点A出了,沿边AB向点B运动,且满足∠DPC=∠A,设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切时,求t的值.9. 如图,直角梯形ABCD中,AD∥BC,∠B=90°,AB=12 cm,BC=9 cm,DC=13 cm,点P是线段AB上一个动点.设BP为x cm,△PCD的面积为y cm2.(1)求AD 的长;(2)求y与x之间的函数关系式,并求出当x为何值时,y有最大值?最大值是多少?(3)在线段AB上是否存在点P,使得△PCD是直角三角形?若存在,求出x的值;若不存在,请说明理由.
上传时间:2023-04-30 页数:11
467人已阅读
(5星级)
中考冲刺:阅读理解型问题—知识讲解(提高)【中考展望】 阅读理解型问题在近几年的全国中考试题中频频亮相,应该特别引起我们的重视. 它由两部分组成:一是阅读材料;二是考查内容.它要求学生根据阅读获取的信息回答问题.提供的阅读材料主要包括:一个新的数学概念的形成和应用过程,或一个新的数学公式的推导与应用,或提供新闻背景材料等.考查内容既有考查基础的,又有考查自学能力和探索能力等综合素质的.这类问题一般文字叙述较长,信息量较大,内容丰富,超越常规,源于课本,又高于课本,各种关系错综复杂,不仅能考查同学们阅读题中文字获取信息的能力,还能考查同学们获取信息后的抽象概括能力、建模能力、决策判断能力等.同时,更能够综合考查同学们的数学意识和数学综合应用能力.【方法点拨】题型特点:先给出一段材料,让学生理解,再设立新的数学概念,新概念的解答可以借鉴前面材料的结论或思想方法.解题策略:从给的材料入手,通过理解分析本材料的内容,捕捉已知材料的信息,灵活应用这些信息解决新材料的问题.解决阅读理解问题的关键是要认真仔细地阅读给定的材料,弄清材料中隐含了什么新的数学知识、结论,或揭示了什么数学规律,或暗示了什么新的解题方法,然后依题意进行分析、比较、综合、抽象和概括,或用归纳、演绎、类比等进行计算或推理论证,并能准确地运用数学语言阐述自己的思想、方法、观点.展开联想,将获得的新信息、新知识、新方法进行迁移,建模应用,解决题目中提出的问题.阅读理解题一般可分为如下几种类型:(1)方法模拟型——通过阅读理解,模拟提供材料中所述的过程方法,去解决类似的相关问题;(2)判断推理型——通过阅读理解,对提供的材料进行归纳概括;按照对材料本质的理解进行推理,作出解答;(3)迁移发展型——从提供的材料中,通过阅读,理解其采用的思想方法,将其概括抽象成数学模型去解决类同或更高层次的另一个相关命题.【典型例题】类型一、阅读试题提供新定义、新定理,解决新问题1.问题情境:用同样大小的黑色棋子按如图所示的规律摆放,则第2012个图共有多少枚棋子?建立模型:有些规律问题可以借助函数思想来探讨,具体步骤:第一步,确定变量;第二步:在直角坐标系中画出函数图象;第三步:根据函数图象猜想并求出函数关系式;第四步:把另外的某一点代入验证,若成立,则用这个关系式去求解. 解决问题:根据以上步骤,请你解答问题情境.1【思路点拨】画出相关图形后可得这些点在一条直线上,设出直线解析式,把任意两点代入可得直线解析式,进而把x=2012代入可得相应的棋子数目.【答案与解析】解:以图形的序号为横坐标,棋子的枚数为纵坐标,描点:(1,4)、(2,7)、(3,10)、(4,13)依次连接以上各点,所有各点在一条直线上,设直线解析式为y=kx+b,把(1,4)、(2,7)两点坐标代入得427kbkb, 解得31kb, 所以y=3x+1,验证:当x=3时,y=10.2所以,另外一点也在这条直线上.当x=2012时,y=3×2012+1=6037.答:第2012个图有6037枚棋子.【总结升华】考查一次函数的应用;根据所给点画出相应图形,从而判断出相应的函数是解决本题的突破点.举一反三:【变式】如图1,A,B,C为三个超市,在A通往C的道路(粗实线部分)上有一D点,D与B有道路(细实线部分)相通.A与D,D与C,D与B之间的路程分别为25km,10km,5km.现计划在A通往C的道路上建一个配货中心H,每天有一辆货车只为这三个超市送货.该货车每天从H出发,单独为A送货1次,为B送货1次,为C送货2次.货车每次仅能给一家超市送货,每次送货后均返回配货中心H,设H到A的路程为xkm,这辆货车每天行驶的路程为ykm.(1)用含x的代数式填空:当0≤x≤25时,货车从H到A往返1次的路程为2xkm,货车从H到B往返1次的路程为 km,货车从H到C往返2次的路程为 km,这辆货车每天行驶的路程y= .当25<x≤35时,这辆货车每天行驶的路程y= ;(2)请在图2中画出y与x(0≤x≤35)的函数图象;(3)配货中心H建在哪段,这辆货车每天行驶的路程最短?【答案】解:(1)∵当0≤x≤25时,货车从H到A往返1次的路程为2x,货车从H到B往返1次的路程为:2(5+25-x)=60-2x,货车从H到C往返2次的路程为:4(25-x+10)=140-4x,这辆货车每天行驶的路程为:y=60-2x+2x+140-4x=-4x+200.当25<x≤35时,货车从H到A往返1次的路程为2x,货车从H到B往返1次的路程为:2(5+x-
上传时间:2023-04-30 页数:14
467人已阅读
(5星级)
反比例函数(提高)【学习目标】1. 理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式.2. 能根据解析式画出反比例函数的图象,初步掌握反比例函数的图象和性质.3. 会用待定系数法确定反比例函数解析式,进一步理解反比例函数的图象和性质.4. 会解决一次函数和反比例函数有关的问题.【要点梳理】要点一、反比例函数的定义一般地,形如 (为常数,)的函数称为反比例函数,其中是自变量,是函数,自变量的取值范围是不等于0的一切实数.要点诠释:(1)在中,自变量是分式的分母,当时,分式无意义,所以自变量的取值范围是,函数的取值范围是.故函数图象与轴、轴无交点.(2) ()可以写成()的形式,自变量的指数是-1,在解决有关自变量指数问题时应特别注意系数这一条件.(3) ()也可以写成的形式,用它可以迅速地求出反比例函数的比例系数,从而得到反比例函数的解析式.要点二、确定反比例函数的关系式确定反比例函数关系式的方法仍是待定系数法,由于反比例函数中,只有一个待定系数,因此只需要知道一对的对应值或图象上的一个点的坐标,即可求出的值,从而确定其解析式.用待定系数法求反比例函数关系式的一般步骤是: (1)设所求的反比例函数为: ();(2)把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程;(3)解方程求出待定系数的值;(4)把求得的值代回所设的函数关系式 中.要点三、反比例函数的图象和性质11、 反比例函数的图象特征:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限;反比例函数的图象关于原点对称,永远不会与轴、轴相交,只是无限靠近两坐标轴.要点诠释:(1)若点()在反比例函数的图象上,则点()也在此图象上,所以反比例函数的图象关于原点对称;(2)在反比例函数(为常数,) 中,由于,所以两个分支都无限接近但永远不能达到轴和轴.2、画反比例函数的图象的基本步骤:(1)列表:自变量的取值应以0为中心,在0的两侧取三对(或三对以上)互为相反数的值,填写值时,只需计算右侧的函数值,相应左侧的函数值是与之对应的相反数;(2)描点:描出一侧的点后,另一侧可根据中心对称去描点;(3)连线:按照从左到右的顺序连接各点并延伸,连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.注意双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不与坐标轴相交;(4)反比例函数图象的分布是由的符号决定的:当时,两支曲线分别位于第一、三象限内,当时,两支曲线分别位于第二、四象限内. 3、反比例函数的性质(1)如图1,当时,双曲线的两个分支分别位于第一、三象限,在每个象限内,值随值的增大而减小; (2)如图2,当时,双曲线的两个分支分别位于第二、四象限,在每个象限内,值随值的增大而增大;要点诠释:反比例函数的增减性不是连续的,它的增减性都是在各自的象限内的增减情况,反比例函数的增减性都是由反比例系数的符号决定的;反过来,由双曲线所在的位置和函数的增减性,也可以推断出的符号.要点四:反比例函数()中的比例系数的几何意义2过双曲线() 上任意一点作轴、轴的垂线,所得矩形的面积为.过双曲线() 上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为. 要点诠释:只要函数式已经确定,不论图象上点的位置如何变化,这一点与两坐标轴的垂线和两坐标轴围成的面积始终是不变的.【典型例题】类型一、反比例函数定义1、当为何值时是反比例函数?【思路点拨】根据反比例函数解析式,也可以写成的形式,后一种表达方法中的次数为-1,由此可知函数是反比例函数,要具备的两个条件为且,二者必须同时满足,缺一不可.【答案与解析】解:令由①得,=±1,由②得,≠1.综上,=-1,即=-1时,是反比例函数.【总结升华】反比例函数解析式的三种形式:①;②;③.类型二、确定反比例函数解析式2、(2014春•裕民县校级期中)正比例函数y=2x与双曲线的一个交点坐标为A(2,m).(1)求出点A的坐标;(2)求反比例函数关系式.3【答案与解析】解:(1)将A点坐标是(2,m)代入正比例y=2x中,得:m=4,则A(2,4);(2)将A(2,4)代入反比例解析式中,得:4=,即k=8,则反比例函数解析式y=.【总结升华】此题考查了反比例函数与一次函数的交点问题,利用了待定系数法,熟练掌握待定系数法是解本题的关键.举一反三:【变式】已知,与成正比例,与成反比例,且当=1时,=7;当=2时,=8.(1) 与之间的函数关系式;(2)自变量的取值范围;(3)当=4时,的值.【答案】解:(1)∵与成正比例,∴设.∵与成反比例,∴设.∴.把与分别代入上式,得∴所以与的函数解析式为.(2)自变量
上传时间:2023-04-30 页数:7
467人已阅读
(5星级)
平行线及其判定(基础)知识讲解【学习目标】1.理解平行线的概念,会用作图工具画平行线,了解在同一平面内两条直线的位置关系;2.掌握平行公理及其推论;3.掌握平行线的判定方法,并能运用平行线的判定方法,判定两条直线是否平行. 【要点梳理】要点一、平行线的定义及画法1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a∥b.要点诠释:(1)平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交,三者缺一不可;(2)有时说两条射线平行或线段平行,实际是指它们所在的直线平行,两条线段不相交并不意味着它们就平行.(3)在同一平面内,两条直线的位置关系只有相交和平行两种.特别地,重合的直线视为一条直线,不属于上述任何一种位置关系.2.平行线的画法:用直尺和三角板作平行线的步骤:①落:用三角板的一条斜边与已知直线重合.②靠:用直尺紧靠三角板一条直角边.③推:沿着直尺平移三角板,使与已知直线重合的斜边通过已知点.④画:沿着这条斜边画一条直线,所画直线与已知直线平行.要点二、平行公理及推论1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点诠释:(1)平行公理特别强调经过直线外一点,而非直线上的点,要区别于垂线的第一性质.(2)公理中有说明存在;只有说明唯一.(3)平行公理的推论也叫平行线的传递性.要点三、直线平行的判定1判定方法1:同位角相等,两直线平行.如上图,几何语言:∵ ∠3=∠2∴ AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵ ∠1=∠2∴ AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵ ∠4+∠2=180°∴ AB∥CD(同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.【典型例题】类型一、平行线的定义及表示1.下列叙述正确的是 ( )A.两条直线不相交就平行B.在同一平面内,不相交的两条线叫做平行线C.在同一平面内,不相交的两条直线叫做平行线D.在同一平面内,不相交的两条线段叫做平行线 【答案】C【解析】在同一平面内两条直线的位置关系是不相交就平行,但在空间就不一定了,故A选项错;平行线是在同一平面内不相交的两条直线,不相交的两条曲线就不是平行线,故B选项错;平行线是针对两条直线而言.不相交的两条线段所在的直线不一定不相交,故D选项错.【总结升华】本例属于对概念的考查,应从平行线的概念入手进行判断.举一反三:【变式】(2015春•鞍山期末)下列说法错误的是() A.无数条直线可交于一点 B.直线的垂线有无数条,但过一点与垂直的直线只有一条 C.直线的平行线有无数条,但过直线外一点的平行线只有一条 D.互为邻补角的两个角一个是钝角,一个是锐角【答案】D类型二、平行公理及推论2.下列说法中正确的有()2 ①一条直线的平行线只有一条;②过一点与已知直线平行的直线只有一条;③因为a∥b,c∥d,所以a∥d;④经过直线外一点有且只有一条直线与已知直线平行.A.1个B 2个C.3个D.4个【答案】 A 【解析】一条直线的平行线有无数条,故①错;②中的点在直线外还是在直线上位置不明确,所以②错,③中b与c的位置关系不明确,所以③也是错误的;根据平行公理可知④正确,故选A.【总结升华】本题主要考察的是平行公理及推论的内容,要正确理解必须要抓住关键字词及其重要特征,在理解的基础上记忆,在比较中理解.举一反三:【变式】直线a∥b,b∥c,则直线a与c的位置关系是.【答案】平行类型三、两直线平行的判定3. (2016•来宾)如图,在下列条件中,不能判定直线与平行的是() A.∠1=∠2B.∠2=∠3C.3=5∠∠D.∠3+4=180°∠【思路点拨】根据平行线的判定方法进行判断.【答案】C【解析】解:∠3与∠5不是同位角,不是内错角,也不是同旁内角,所以∠3=∠5不能判定ABCD∥.【总结升华】正确识别三线八角中的同位角、内错角、同旁内角是正确答题的关键,熟练掌握平行线的判定定理.举一反三:【变式1】如图,下列条件中,不能判断直线∥的是().A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=1800【答案】B3 【变式2】已知,如图,BE平分ÐABC,CF平分ÐBCD,Ð1=Ð2,求证:AB//CD.【答案】∵ Ð1=Ð2∴ 2Ð1=2Ð2 ,即∠ABC=∠BCD∴ AB//CD (内错角相等,两直线平行)4.如图所示,由(1)∠1=∠3,(2)∠
上传时间:2023-04-30 页数:5
467人已阅读
(5星级)
湖南省常德市2021年中考数学试卷一、选择题1. 4的倒数是()A. B. 2C. 1D. 2. 若,下列不等式不一定成立的是()A. B. C. D. 3. 一个多边形的内角和是1800°,则这个多边形是()边形.A. 9B. 10C. 11D. 124. 下列计算正确的是()A. B. C. D. 5. 舒青是一名观鸟爱好者,他想要用折线统计图来反映中华秋沙鸭每年秋季到当地避寒越冬的数量变化情况,以下是排乱的统计步骤:①从折线统计图中分析出中华秋沙鸭每年来当地避寒越冬的变化趋势;②从当地自然保护区管理部门收集中华秋沙鸭每年来当地避寒越冬的数量记录;③按统计表的数据绘制折线统计图;④整理中华秋沙鸭每年来当地避寒越冬的数量并制作统计表.正确统计步骤的顺序是()A. ②→③→①→④B. ③→④→①→②C. ①→②→④→③D. ②→④→③→①6. 计算:()A. 0B. 1C. 2D. 7. 如图,已知F、E分别是正方形的边与的中点,与交于P.则下列结论成立的是()A. B. C. D. 8. 阅读理解:如果一个正整数m能表示为两个正整数a,b的平方和,即,那么称m为广义勾股数.则下面的四个结论:①7不是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数.依次正确的是()A. ②④B. ①②④C. ①②D. ①④二、填空题9. 求不等式的解集_________.10. 今年5月11日,国家统计局公布了第七次全国人口普查的结果,我国现有人口141178万人.用科学计数法表示此数为___________人.11. 在某次体育测试中,甲、乙两班成绩的平均数、中位数、方差如下表所示,规定学生个人成绩大于90分为优秀,则甲、乙两班中优秀人数更多的是__________班.人数平均数中位数方差甲班45829119.3乙班4587895.812. 分式方程的解为__________.13. 如图,四边形ABCD是⊙O的内接四边形,若∠BOD=80°,则∠BCD的度数是_____.14. 如图.在中,,平分,于E,若,则的长为________.15. 刘凯有蓝、红、绿、黑四种颜色的弹珠,总数不超过50个,其中为红珠,为绿珠,有8个黑珠.问刘凯的蓝珠最多有_________个.16. 如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有个正方形,所有线段的和为4,第二个图形有个小正方形,所有线段的和为12,第三个图形有个小正方形,所有线段的和为24,按此规律,则第n个网格所有线段的和为____________.(用含n的代数式表示)三、解答题17. 计算:.18. 解方程:19. 化简:20. 如图,在中,.轴,O为坐标原点,A的坐标为,反比例函数的图象的一支过A点,反比例函数的图象的一支过B点,过A作轴于H,若的面积为.(1)求n的值;(2)求反比例函数的解析式.21. 某汽车贸易公司销售A、B两种型号的新能源汽车,A型车进货价格为每台12万元,B型车进货价格为每台15万元,该公司销售2台A型车和5台B型车,可获利3.1万元,销售1台A型车和2台B型车,可获利1.3万元.(1)求销售一台A型、一台B型新能源汽车的利润各是多少万元?(2)该公司准备用不超过300万元资金,采购A、B两种新能源汽车共22台,问最少需要采购A型新能源汽车多少台?22. 今年是建党100周年,学校新装了国旗旗杆(如图所示),星期一该校全体学生在国旗前举行了升旗仪式.仪式结束后,站在国旗正前方的小明在A处测得国旗D处的仰角为,站在同一队列B处的小刚测得国旗C处的仰角为,已知小明目高米,距旗杆的距离为15.8米,小刚目高米,距小明24.2米,求国旗的宽度是多少米?(最后结果保留一位小数)(参考数据:)23. 我市华恒小区居民在一针疫苗一份心,预防接种尽责任的号召下,积极联系社区医院进行新冠疫苗接种.为了解接种进度,该小区管理人员对小区居民进行了抽样调查,按接种情况可分如下四类:A类——接种了只需要注射一针的疫苗:B类——接种了需要注射二针,且二针之间要间隔一定时间的疫苗;C类——接种了要注射三针,且每二针之间要间隔一定时间的疫苗;D类——还没有接种,图1与图2是根据此次调查得到的统计图(不完整).请根据统计图回答下列问题.(1)此次抽样调查的人数是多少人?(2)接种B类疫苗的人数的百分比是多少?接种C类疫苗的人数是多少人?(3)请估计该小区所居住的18000名居民中有多少人进行了新冠疫苗接种.(4)为了继续宣传新冠疫苗接种的重要性,小区管理部门准备在已经接种疫苗的居民中征集2名志愿宣传者,现有3男2女共5名居民报名,要从这5人中随机挑选2人,求恰好抽到
上传时间:2023-05-08 页数:7
466人已阅读
(5星级)
2021年广西梧州中考题一、选择题(下列各小题的备选答案中,只有一个是最符合题意的,请你选出并填涂在答题卡相应的答题区域内,否则答案无效。每小题2分,共30分)1. 2021年4月7日,一则呼吁好心人捐献O型血和O0型血小板的求助信息在梧州市微信朋友圈流传,一场全城踊跃献血的爱心接力温暖上演,共有58名爱心市民定向献血给病情危重的15岁少女,对材料理解正确的是()A. 生命是一个逐渐丰富的过程B. 关爱他人就难以善待自己C. 生命的价值在于做出了牺牲D. 无私奉献让生命更有意义【答案】D【解析】【详解】本题主要考查对生命的理解。D:依据题文,对于爱心市民定向献血给病情危重的15岁少女这则材料,体现了爱心市民的奉献精神,这样的做法让生命更有意义,故D正确;A:题文主要考查如何关爱,善待他人,让生命更有意义,选项内容与题意无关,故A错误;B:依据教材所学,关爱他人就是善待自己,故B错误;C:每个人对生命的价值理解各有不同,选项说法太绝对,故C错误;故本题选D。2. 近年来,外卖队伍不断壮大,为了能准时送餐,部外外卖小哥逆向行驶、超速行驶、闯红灯……成为交通事故的高发群体,对于以上行为,认识错误的是()A. 为准时送达,偶尔违规可以理解B. 任何组织和个人都要遵守法律,依法办事C. 要珍爱生命,生命价值高于一切D. 社会正常运行需要秩序,我们要自觉维护【答案】A【解析】【详解】本题主要考查对遵守社会规则知识的理解。A:为准时送达,偶尔违规这种想法是错误的,恰恰就是存在这种侥幸心理,才导致外卖小哥成为交通事故的高发群体,故A错误;BCD:不管如何社会正常运行需要秩序,我们要自觉维护,任何组织和个人都要遵守法律,依法办事,更要懂得珍爱生命,生命价值高于一切,故BCD正确;故本题选A。3. 古诗文往往蕴含大道理,下列古诗文与蕴含的道理一致的是()A. 已所不欲,勿施于人——要尊重他人,学会欣赏他人优点B. 人而无礼,焉以为德——不学礼仪,也能成为有道德的人C. 人而无信,不知其可也——礼貌是一个人立身处世的前提D. 道不可坐论,德不能空谈——要做社会主义道德的践行者【答案】D【解析】【详解】本题考查对古诗文所蕴含道理的理解。A:已所不欲,勿施于人要学会换位思考,体谅他人,所以A错误;B:人而无礼,焉以为德意思是如果人没有礼礼,就谈不上道德修养,所以B错误;C:人而无信,不知其可也意为一个人如果不讲信用,真不知道他是否可以(做成事)。即人不讲信用是不行的,所以C错误;D:道不可坐论,德不能空谈意思是:道理不可以坐着讨论,品德不能只是嘴上空谈。这表明,要做社会主义核心价值观的积极践行者,必须要重视笃行,所以D说法正确;故本题选D。4. 成就幸福人生,离不开责任,下列行为中属于积极承担责任的是()A. 学习任务繁忙,不做家务劳动B. 临近考试,拒绝参加学校公益活动C. 配合疫情防控,做好防护措施D. 见有人驾车撞人后逃逸,置之不理【答案】C【解析】【详解】本题考查对责任的认识和把握。、C:根据题文下列行为中属于积极承担责任的是配合疫情防控,做好防护措施,这既是对自己的生命负责,也是对他人负责、对社会负责,故C说法正确;ABD:学习任务繁忙,不做家务劳动;临近考试,拒绝参加学校公益活动;见有人驾车撞人后逃逸,置之不理,都是对自己、对集体、对他人不负责任的做法,故ABD说法错误;故本题选C。5. 2021年2月19日,中央军委授予祁发宝卫国戍边英雄团长荣誉称号,追授陈红军卫国戍边英雄荣誉称号,给陈祥榕、肖思远、王焯冉追记一等功,向英雄学习,做维护国家安全的主角,我们中学生可以()①增强维护国家安全的意识②为维护国家安全工作提供便利和协助③制裁破坏国家安全的行为④崇尚英雄,以英雄为榜样,从我做起A. ①②③B. ①②④C. ①③④D. ②③④【答案】B【解析】【详解】本题考查维护国家安全方面的知识。①②④:依据教材知识,结合材料,向英雄学习,做维护国家安全的主角,我们中学生就要增强维护国家安全的意识,为维护国家安全工作提供便利和协助,崇尚英雄,以英雄为榜样,从我做起,所以①②④说法正确;③:错误,制裁破坏国家安全的行为 不是中学生能做的;故本题选B。6. 漫画《你出界了》,对国家机关和公职人员的警示是()①行政机关必须依法行政,不能滥用职权 ②监察机关必须公正司法,杜绝贪污腐败③司法机关独立行使监察权,捍卫公平正义 ④公职人员要增强宪法意识,依法行使权力A. ①②B. ①④C. ②④D. ③④【答案】B【解析】【详解】本题考查宪法规范权利运行,考查分析和运用所学知识的能力。①④:漫画寓意是宪法规范权力运行,警示国家行政机关不能滥用职权,
上传时间:2023-05-08 页数:10
466人已阅读
(5星级)
(北师大版)湖北省潜江市七年级数学下册期中试卷及答案一、选择题(30分)1、下图中是对顶角的是()。2、如果两个角的角平分线互相垂直,则这两个角的关系是()。A相等 B互补 C互余 D相等或互余3、直线l上有A、B、C三点,直线l外有一点P,若PA=5cm,PB=3cm,PC=2cm,那么点P到直线l的距离()。A等于2cmB等于3cm C等于5cmD不大于2cm4、如图,平行直线AB、CD与相交直线EF、GH相交,图中相等的内错角共有()对。A2对B4对C6对 D8对5、平面内三条直线的交点个数可能有()个。 A1个或3个B2个或3个C1个或2个或3个D0个或1个或2个或3个6、下列各数中:0.3,π,38,2223,0.1234567891011……,无理数的个数有()个。A1 B2C3D47、飞机在某高空因任务需要向左偏转300,飞行一段距离完成任务后,要回到与原航向平行的轨道上,需要()。 A向右偏转1500 B向右偏转600 C向右偏转300D向左偏转3008、若点A2,2xx是x轴上的点,则点A关于y轴的对称点是()。A(4,0) B(0,4) C(-4,0)D(0,-4)9、如图,AB∥EF∥CD,∠ABC=460,∠CEF=1600,则∠BCE等于( )。ABCDABCDFHGE A260B160 C230 D200 10、若点P(a、b)到两坐标轴的距离相等,且ab=4,则点P的坐标为( )。A(2,2)B(-2,-2)C(2,2)或(-2,2) D(2,2)或(-2,-2)二、填空题(30分)来源:http://www.bcjy123.com/tiku/11、若a是16的算术平方根,b是327的算术平方根,则ba的值是。12、实数x、y满足155xxy,则xy的平方根是。13、在平面直角坐标系中,点(-3,2)向右平移4个单位,再向下平移3个单位,平移后的点的坐标是。14、定义一种新运算a※b2222baba,则5※(-12)= 。15、将7的小数部分记作m,17的小数部分记作n,则m-n=。16、数轴上A、B两点分别表示2,3,则点A关于点B的对称点C表示的数是。17、若点)1,1(baM在第一象限,则)1,1(ba在第象限。18、已知),(,03)5(2baPba则的坐标是。19、如图,若∠A=∠ABC,则∥( )若AB∥CE,则=∠E( )20、已知点A(0,5)和点B(m,0),且直线AB与坐标轴围成的三角形的面积是10,则m的值是 。三、解答题(60分)21、计算(每小题5分,共10分)。ABEDCABDEFC⑴326449)5(⑵5235222、利用平方根和立方根的定义,求出x的值(每小题5分,共10分)。⑴22)2()3(4y⑵81)1(3x23、如图,已知∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,那么EC与DF有什么位置关系,并说明你的理由。(10分)24、比较下列实数的大小(每小题4分,共8分)来源:http://www.bcjy123.com/tiku/⑴53 与 35 ⑵216 与 235 25、平面内两条直线AB、CD互相平行,在两直线外取一点P(如图),请写出ABCFDEPDCABABCDBCCDAPPABPD各图形中∠A,∠C,∠P的关系,并选取其中一个给出证明。(10分)(1) (2) (3) (4)26、一副三角尺如图放置,直角顶点重合,
上传时间:2023-04-30 页数:5
466人已阅读
(5星级)
中考冲刺:观察、归纳型问题(提高)一、选择题1.(2015秋•扬州校级月考)如图,数轴上有一个质点从原点出发,沿数轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,质点落在表示数3的点上(允许重复过此点),则质点的不同运动方案共有() A.2种 B.3种 C.4种 D.5种2. 在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第2012个正方形的面积为()A. B. C. D.3. 边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为() A. B. C. D.二、填空题14.如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME的面积记为S2;当AB=3时,△AME的面积记为S3;…;当AB=n时,△AME的面积记为Sn.当n≥2时,Sn-Sn-1=______.5.如图的平面直角坐标系中有一个正六边形ABCDEF,其中C、D的坐标分别为(1,0)和(2,0).若在无滑动的情况下,将这个六边形沿着x轴向右滚动,则在滚动过程中,这个六边形的顶点A、B、C、D、E、F中,会过点(45,2)的是点______. 6.(2016春•固始县期末)如图所示,在平面直角坐标系中,第一次将三角形OAB变换成三角形OA1B1,第二次将三角形OA1B1变换成三角形OA2B2.第三次将三角形OA2B2变换成三角形OA3B3,已知A(1,2),A1(2,2),A2(4,2),A3(8,2),B(2,0),B1(4,0),B2(8,0),B3(16,0)..(1)观察每次变换前后的三角形有何变化?找出规律再将三角形将△OA3B3变换成三角形OA4B4,则A4的坐标是______,B4的坐标是______.(2)若按第(1)题找到的规律将三角形OAB进行n次变换,得到三角形OAnBn,推测An的坐标是______,Bn的坐标是______.三、解答题7.在下图中,每个正方形由边长为1的小正方形组成:2 (1)观察图形,请填写下列表格:正方形边长1357…n(奇数)蓝色小正方形个数… 正方形边长2468…n(偶数)蓝色小正方形个数… (2)在边长为n(n≥1)的正方形中,设蓝色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.8. 定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形.探究:一般地,任意三角形都是自相似图形,只要顺次连结三角形各边中点,则可将原三角形分割为四个都与它自己相似的小三角形.我们把△DEF(图乙)第一次顺次连结各边中点所进行的分割,称为1阶分割(如图1);把1阶分割得出的4个三角形再分别顺次连结它的各边中点所进行的分割,称为2阶分割(如图2)……依次规则操作下去.n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时小三角形的面积为Sn.(1)若△DEF的面积为10000,当n为何值时,2<Sn<3?(请用计算器进行探索,要求至少写出三次的尝试估算过程)(2)当n>1时,请写出一个反映Sn-1,Sn,Sn+1之间关系的等式(不必证明). 9. (2016•台州)定义:有三个内角相等的四边形叫三等角四边形.(1)三等角四边形ABCD中,∠A=∠B=∠C,求∠A的取值范围;(2)如图,折叠平行四边形纸片DEBF,使顶点E,F分别落在边BE,BF上的点A,C处,折痕分别为DG,DH.求证:四边形ABCD是三等角四边形.(3)三等角四边形ABCD中,∠A=∠B=∠C,若CB=CD=4,则当AD的长为何值时,AB的长最大,其最大值是多少?并
上传时间:2023-04-30 页数:11
466人已阅读
(5星级)
中考冲刺:图表信息型问题—知识讲解(提高)【中考展望】图表信息题是指通过图形、图象或图表及一定的文字说明来提供问题情景的一类试题,它是近几年全国各省市中考所展示的一种新题型,这类试题形式多样,取材广泛,可增加试题的灵活性和趣味性,其发展前景非常广阔.用好题中提供的信息,有利于提高学生分析、解决简单实际问题的能力,同时也是培养现代公民素质的一条重要途径.【方法点拨】1.图象信息题题型特点:这类题是中考试卷中出现频率较高的题型之一,它是通过图象呈现问题中两个变量之间的数量关系,主要考查学生对函数思想和数形结合思想的掌握程度.解题策略:解答这类问题,在弄清题意的基础上,弄清两坐标轴所代表的含义,并对图象的形状、位置、发展变化趋势等捕捉提炼有效信息,解决相关问题.2.图表信息题图表信息题是指通过图表的形式提供信息,这些信息一般以数据形式居多,其主要考查学生对图表数据的分析、比较、判断和结论的归纳能力,要求学生有较强的定量分析和定性概括能力.图表信息题是中考常见的一种题型,它是通过图象、图形及表格等形式给出信息的一种新题型,在解决图表信息题的时候要注意以下几点:1、细读图表:(1)注重整体阅读.先对材料或图表资料等有一个整体的了解,把握大体方向.要通过整体阅读,搜索有效信息;(2)重视数据变化.数据的变化往往说明了某项问题,而这可能正是这个材料的重要之处;(3)注意图表细节.图表中一些细节不能忽视,它往往起提示作用,如图表下的注数字单位等.2、审清要求:图表题往往对答题有一定的要求,根据考题要求进行回答,才能有的放矢.题目要求包往往括字数句数限制、比较对象、变化情况等.3、准确表达解答图表题需要用简明的语言进行概括.解答前,要正确分析图表中所列内容的相互联系,从中找出规律性的东西,再归纳概括为一个结论.在表述时要有具体的数据比较、分析,要客观地反映图表包含的信息,特别要注意题目中的特殊限制.【典型例题】类型一、图象信息题1.(2016•烟台)如图,⊙O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发(P点与O点不重合),沿O→C→D的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图象大致是()1A.B. C.D.【思路点拨】根据题意分1<x<与≤x<2两种情况,确定出y与x的关系式,即可确定出图象.【答案】C.【答案与解析】解:当P在OC上运动时,根据题意得:sin∠APB=,∵OA=1,AP=x,sin∠APB=y,∴xy=1,即y=(1<x≤),当P在上运动时,∠APB=∠AOB=45°,此时y=(<x≤2),图象为:故选C.【总结升华】此题考查了动点问题的函数图象,列出y与x的函数关系式是解本题的关键.2.(福鼎市期中)甲、乙两人骑车前往A地,他们距A地的路程S(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两人的速度各是多少?(2)求甲距A地的路程S与行驶时间t的函数关系式.(3)直接写出在什么时间段内乙比甲距离A地更近?(用不等式表示)2【思路点拨】(1)分别利用利用总路程除以总时间求出速度即可;(2)利用待定系数法求出函数解析式即可;(3)利用函数图象确定乙比甲距离A地更近时的时间即可.【答案与解析】解:(1)v甲==30(km/h),v乙==20(km/h);(2)设甲的函数关系式为S=kt+b,把(0,50),(2.5,0)代入解得:,解得:,∴关系式为:S=20t+50﹣;(3)由图象可得出:当1<t<2.5时,乙比甲距离A地更近.【总结升华】此题考查了学生从图象中读取信息的能力.学会利用数形结合来解答问题.举一反三:【变式】如图,已知抛物线P:y=ax2+bx+c(a≠0) 与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下:(1) 求A、B、C三点的坐标;(2) 若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;(3) 当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k·DF,若点M不在抛物线P上,求k的取值范围.3【答案】解:⑴ 解法一:设 2(0)yaxbxca,任取x,y的三组值代入,求出解析式2142yxx=+-, 令y=0,求出124,2xx=-=;令x=0,得y=-4,∴ A、B、C三点的坐标分别是A(2,0),B(-4,0),C(0,-4) . 解法二:由抛物线P过点(1,-52),(-3,52-)可知,抛物线P的对称轴方程为x=-1,又∵ 抛物线P过(2,0)、(-2,-4),则由抛物线
上传时间:2023-04-30 页数:11
466人已阅读
(5星级)
《整式的加减》全章复习与巩固(提高)知识讲解【学习目标】1.理解并掌握单项式与多项式的相关概念;2.理解整式加减的基础是去括号和合并同类项,并会用整式的加减运算法则,熟练进行整式的加减运算、求值;3.深刻体会本章体现的主要的数学思想-整体思想.【知识网络】【要点梳理】要点一、整式的相关概念 1.单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式. 要点诠释:(1)单项式的系数是指单项式中的数字因数.(2)单项式的次数是指单项式中所有字母的指数和. 2.多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.要点诠释:(1)在多项式中,不含字母的项叫做常数项.(2)多项式中次数最高的项的次数,就是这个多项式的次数.(3)多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式.3. 多项式的降幂与升幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列.另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列.要点诠释:(1)利用加法交换律重新排列时,各项应连同它的符号一起移动位置;(2)含有多个字母时,只按给定的字母进行降幂或升幂排列.4.整式:单项式和多项式统称为整式.要点二、整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.要点诠释:辨别同类项要把准两相同,两无关:(1)两相同是指:①所含字母相同;②相同字母的指数相同;(2)两无关是指:①与系数无关;②与字母的排列顺序无关.2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.要点诠释:合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持1不变.3.去括号法则:括号前面是+,把括号和它前面的+去掉后,原括号里各项的符号都不改变;括号前面是-,把括号和它前面的-号去掉后,原括号里各项的符号都要改变.4.添括号法则:添括号后,括号前面是+,括号内各项的符号都不改变;添括号后,括号前面是-,括号内各项的符号都要改变.5.整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项.【典型例题】类型一、整式的相关概念1.(2016春•新泰市期中)下列说法正确的是()A.1﹣xy是单项式 B.ab没有系数C.﹣5是一次一项式 D.﹣a2b+ab﹣abc2是四次三项式【思路点拨】根据多项式是几个单项式的和,数字因数是单项式的系数,字母指数和是单项式的次数,多项式中次数最高的单项式的次数是多项式的次数,每个单项式是多项式的项,可得答案.【答案】D.【解析】解:A、1﹣xy是多项式,故A错误;B、ab的系数是1,故B错误;C、﹣5是单项式,故C错误;D、﹣a2b+ab﹣abc2是四次三项式,故D正确;故选:D.【总结升华】本题考查了单项式,单项式的系数,多项式,多项式的次数等基本概念,关键是对这些基本概念一定要熟悉.举一反三:【变式1】(2014•佛山)多项式2a2b﹣ab2﹣ab的项数及次数分别是()A.3,3 B.3,2C.2,3D.2,2【答案】A2a2b﹣ab2﹣ab是三次三项式,故次数是3,项数是3.【变式2】若多项式是关于的二次三项式,则,,这个二次三项式为.【答案】类型二、同类项及合并同类项2.若是同类项,求出m, n的值,并把这两个单项式相加.【答案与解析】解:因为是同类项,2所以 解得当且时,.【总结升华】同类项的定义中强调,除所含字母相同外,相同字母的指数也要相同.其中,常数项也是同类项.合并同类项时,若不是同类项,则不需合并. 举一反三:【变式】合并同类项.(1);(2).【答案】 (1)原式=(2)原式. 类型三、去(添)括号3.化简.【答案与解析】解:原式=.【总结升华】根据多重括号的去括号法则,可由里向外,也可由外向里逐层推进,在计算过程中要注意符号的变化.若括号前是-号,在去括号时,括号里各项都应变号,若括号前有数字因数,应把数字因数乘到括号里,再去括号.举一反三:【变式1】下列去括号正确的是().A.B.C.3D.【答案】D【变式2】先化简代数式,然后选取一个使原式有意义的a的值代入求值.【答案】.当时,原式=0-0-4=-4.【变式3】(1)(x+y)2-10x-10y+25=(x+y)2-10(______)+25;(2)(a-b+c-d)(a+b-c-d)=[(a-d
上传时间:2023-04-30 页数:6
466人已阅读
(5星级)
角(基础)知识讲解【学习目标】1.掌握角的概念及角的表示方法,并能进行角度的互换;2. 借助三角尺画一些特殊角,掌握角大小的比较方法;3.会利用角平分线的意义进行有关表示或计算;4. 掌握角的和、差、倍、分关系,并会进行有关计算;5. 掌握互为余角和互为补角的概念及性质,会用余角、补角及性质进行有关计算;6.了解方位角的概念,并会用方位角解决简单的实际问题.【要点梳理】 要点一、角的概念1.角的定义:(1)定义一:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.如图1所示,角的顶点是点O,边是射线OA、OB.(2)定义二:一条射线绕着它的端点旋转而形成的图形,射线旋转时经过的平面部分是角的内部.如图2所示,射线OA绕它的端点O旋转到OB的位置时,形成的图形叫做角,起始位置OA是角的始边,终止位置OB是角的终边.要点诠释:(1)两条射线有公共端点,即角的顶点;角的边是射线;角的大小与角的两边的长短无关.(2)平角与周角:如图1所示射线OA绕点O旋转,当终止位置OB和起始位置OA成一条直线时,所形成的角叫做平角,如图2所示继续旋转,OB和OA重合时,所形成的角叫做周角.2.角的表示法:角的几何符号用∠表示,角的表示法通常有以下四种:1图1图2要点诠释:用数字或小写希腊字母表示角时,要在靠近角的顶点处加上弧线,且注上阿拉伯数字或小写希腊字母.3.角的画法(1)用三角板可以画出30°、45°、60°、90°等特殊角.(2)用量角器可以画出任意给定度数的角.(3)利用尺规作图可以画一个角等于已知角.要点二、角的比较与运算1.角度制及其换算角的度量单位是度、分、秒,把一个周角平均分成360等份,每一份就是1°的角,1°的160为1分,记作1′,1′的160为1秒,记作1″.这种以度、分、秒为单位的角的度量制,叫做角度制. 1周角=360°,1平角=180°,1°=60′,1′=60″.要点诠释:在进行有关度分秒的计算时,要按级进行,即分别按度、分、秒计算,不够减,不够除的要借位,从高一位借的单位要化为低位的单位后再进行运算,在相乘或相加时,当低位得数大于等于60时要向高一位进位.2.角的比较:角的大小比较与线段的大小比较相类似,方法有两种.方法1:度量比较法.先用量角器量出角的度数,然后比较它们的大小.方法2:叠合比较法.把其中的一个角移到另一个角上作比较.如比较∠AOB和∠A′O′B′的大小: 如下图,由图(1)可得∠AOB<∠A′O′B′;由图(2)可得∠AOB=∠A′O′B′;由图(3)可得∠AOB>∠A′O′B′.23.角的和、差关系如图所示,∠AOB是∠1与∠2的和,记作:∠AOB=∠1+∠2;∠1是∠AOB与∠2的差,记作:∠1=∠AOB-∠2.要点诠释:(1)用量角器量角和画角的一般步骤:①对中(角的顶点与量角器的中心对齐);②重合(一边与刻度尺上的零度线重合);③读数(读出另一边所在线的度数). (2) 利用三角板除了可以做出30°、45°、60°、90°外,根据角的和、差关系,还可以画出15°,75°,105°,120°,135°,150°,165°的角.4.角平分线从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.如图所示,OC是∠AOB的角平分线,∠AOB=2∠AOC=2∠BOC,∠AOC=∠BOC =12∠AOB.要点诠释:由角平分线的概念产生的合情推理其思维框架与线段中点的思维框架一样.要点三、余角和补角1.定义:一般地,如果两个角的和等于90°(直角),就说这两个角互为余角,即其中一个角是另一个角的余角.类似地,如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角.2.性质:(1)同角(等角)的余角相等.(2)同角(等角)的补角相等.要点诠释:(1)互余互补指的是两个角的数量关系,互余、互补的两个角只与它们的和有关,而与它们的位置无关. (2)一般地,锐角α的余角可以表示为(90°-α),一个角α的补角可以表示为(180°-α) .显然一个锐角的补角比它的余角大90°。要点四、方位角在航行和测绘等工作中,经常要用到表示方向的角.例如,图中射线OA的方向是北偏东60°;射线OB的方向是南偏西30°.这里的北偏东60°和南偏西30°表示方向的角,就叫做方位角.3要点诠释:(1)正东,正西,正南,正北4个方向不需要用角度来表示;(2)方位角必须以正北和正南方向作为基准,北偏东60°一般不说成东偏北30°;(3)在同一问题中观察点可能不止一个,在不同的观测点都要画出表示方向的十字线,确定其观察点的正东、正西、正南、正北的方向;(4)图中的点O是观测点,所有方向线(射线)都
上传时间:2023-04-30 页数:9
466人已阅读
(5星级)
2021年黑龙江省鹤岗市中考数学试卷一、选择题(每题3分,满分30分)1. 下列运算中,计算正确的是()A. B. C. D. 2. 下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D. 3. 如图是由5个小正方体组合成的几何体,则该几何体的主视图是()A. B. C. D. 4. 一组数据:2,4,4,4,6,若去掉一个数据4,则下列统计量中发生变化的是()A. 众数B. 中位数C. 平均数D. 方差5. 有一个人患了流行性感冒,经过两轮传染后共有144人患了流行性感冒,则每轮传染中平均一个人传染的人数是()A. 14B. 11C. 10D. 96. 已知关于的分式方程的解为非负数,则的取值范围是()A. B. 且C. D. 且7. 为迎接2022年北京冬奥会,某校开展了以迎冬奥为主题的演讲活动,计划拿出180 元钱全部用于购买甲、乙两种奖品(两种奖品都购买),奖励表现突出的学生,已知甲种奖品每件15元,乙种奖品每件10元,则购买方案有()A. 5种B. 6种C. 7种D. 8种8. 如图,在平面直角坐标系中,菱形的边轴,垂足为,顶点在第二象限,顶点在轴正半轴上,反比例函数的图象同时经过顶点.若点的横坐标为5,,则的值为()A. B. C. D. 9. 如图,平行四边形的对角线、相交于点E,点O为的中点,连接并延长,交的延长线于点D,交于点G,连接、,若平行四边形的面积为48,则的面积为( )A. 5.5B. 5C. 4D. 310. 如图,在正方形中,对角线与相交于点,点在的延长线上,连接,点是的中点,连接交于点,连接,若,.则下列结论:①;②;③;④;⑤点D到CF的距离为.其中正确的结论是()A. ①②③④B. ①③④⑤C. ①②③⑤D. ①②④⑤二、填空题(每题3分,满分30分)11. 截止到2020年7月底,中国铁路营业里程达到万公里,位居世界第二.将数据万用科学记数法表示为_______.12. 函数中,自变量x的取值范围是____.13. 如图,在平行四边形中,对角线、相交于点O,在不添加任何辅助线的情况下,请你添加一个条件______________,使平行四边形是矩形.. 14. 一个不透明的口袋中装有标号为1、2、3的三个小球,这些小球除标号外完全相同,随机摸出1个小球,然后把小球重新放回口袋并摇匀,再随机摸出1个小球,那么两次摸出小球上的数字之和是偶数的概率是___________.15. 关于x的一元一次不等式组无解,则a的取值范围是____________.16. 如图,在中,是直径,弦的长为5cm,点在圆上,且,则的半径为_____.17. 若一个圆锥的底面半径为1cm,它的侧面展开图的圆心角为,则这个圆锥的母线长为____ cm.18. 如图,在中,,,,以点为圆心,3为半径的,与交于点,过点作交于点,点是边上的顶点,则的最小值为_____.19. 在矩形中,2cm,将矩形沿某直线折叠,使点与点重合,折痕与直线交于点,且3cm,则矩形的面积为______cm2.20. 如图,菱形中,,,延长至,使,以为一边,在的延长线上作菱形,连接,得到;再延长至,使,以为一边,在的延长线上作菱形,连接,得到……按此规律,得到,记的面积为,的面积为……的面积为,则_____.三、解答题(满分60分)21. 先化简,再求值:,其中.22. 如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,的三个顶点坐标分别为. (1)画出关于x轴对称的,并写出点的坐标;(2)画出绕点O顺时针旋转后得到的,并写出点的坐标;(3)在(2)的条件下,求点A旋转到点所经过的路径长(结果保留).23. 如图,抛物线与x轴交于点和点,与y轴交于点C,连接,与抛物线的对称轴交于点E,顶点为点D.(1)求抛物线的解析式;(2)点P是对称轴左侧抛物线上的一个动点,点Q在射线上,若以点P、Q、E为顶点的三角形与相似,请直接写出点P的坐标.24. 为庆祝中国共产党建党100周年,某中学开展学史明理、学史增信、学史崇德、学史力行知识竞赛,现随机抽取部分学生的成绩分成A、B、C、D、E五个等级进行统计,并绘制成如下两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)本次调查中共抽取________学生;(2)补全条形统计图;(3)在扇形统计图中,求B等级所对应的扇形圆心角的度数;(4)若该校有1200名学生参加此次竞赛,估计这次竞赛成绩为A和B等级的学生共有多少名?25. 已知A、B两地相距,一辆货车从A地前往B地,途中因装载货物停留一段时间.一辆轿车沿同一条公路从B地前往A地,到达A地后(在A地停留时间不计)立即原路原速返回
上传时间:2023-05-08 页数:10
465人已阅读
(5星级)
遂宁市2021年初中毕业暨高中阶段学校招生考试数学试卷本试卷满分150分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的学校、姓名、准考证号用0.5毫米的黑色墨水签字笔填写在答题卡上,并检查条形码粘贴是否正确.2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号;回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求.)1. -2021的绝对值是()A. -2021B. 2021C. D. 【答案】B【解析】【分析】一个数的数绝对值是非负数,负数的绝对值是它的相反数.【详解】-2021的绝对值是2021; 故选:B. 【点睛】本题考查了绝对值的定义,以及求绝对值,掌握一个负数的绝对值是它的相反数,是解题的关键.2. 下列计算中,正确的是()A. B. C. D. 【答案】D【解析】【分析】分别根据完全平方公式,同底数幂相除,单项式乘以多项式,合并同类项等知识点化简,然后判断即可.【详解】解:A. ,故选项错误;B. ,故选项错误;C. ,故选项错误;D. ,故选项正确;故选:D.【点睛】本题考查了完全平方公式,同底数幂相除,单项式乘以多项式,合并同类项等知识点,熟悉相关知识点是解题的关键.3. 如图所示的几何体是由6个完全相同的小正方体搭成,其主视图是( )A. B. C. D. 【答案】D【解析】【分析】从正面看:共有2列,从左往右分别有2,1个小正方形;据此可画出图形.【详解】解:如图所示的几何体的主视图是.故选:D.【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.4. 国家统计局2021年5月11日公布了第七次全国人口普查结果,全国总人口约14.1亿人,将14.1亿用科学记数法表示为( )A. 14.1×108B. 1.41×108C. 1.41×109D. 0.141×1010【答案】C【解析】【分析】科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n≥的绝对值与小数点移动的位数相同.当原数绝对值10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:14.1亿,故选:C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.5. 如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积是3cm2,则四边形BDEC的面积为( )A. 12cm2B. 9cm2C. 6cm2D. 3cm2【答案】B【解析】【分析】由三角形的中位线定理可得DE=BC,DE∥BC,可证△ADE∽△ABC,利用相似三角形的性质,即可求解.【详解】解:∵点D,E分别是边AB,AC的中点,∴DE=BC,DE∥BC,∴△ADE∽△ABC,∴,∵S△ADE=3,∴S△ABC=12,∴四边形BDEC的面积=12-3=9(cm2),故选:B.【点睛】本题考查了相似三角形的判定和性质,三角形中位线定理,掌握相似三角形的性质是解题的关键.6. 下列说法正确的是()A. 角平分线上的点到角两边的距离相等B. 平行四边形既是轴对称图形,又是中心对称图形C. 在代数式,,,,,中,,,是分式D. 若一组数据2、3、x、1、5的平均数是3,则这组数据的中位数是4【答案】A【解析】【分析】根据角平分线的性质,平行四边形的对称性,分式的定义,平均数,中位数的性质分别进行判断即可.【详解】解:A.角平分线上的点到角两边的距离相等,故选项正确;B.平行四边形不是轴对称图形,是中心对称图形,故选项错误;C.在代数式,,,,,中,,是分式,故选项错误;D.若一组数据2、3、x、1、5的平均数是3,则这组数据的中位数是3,故选项错误;故选:A.【点睛】本题综合考查了角平分线的性质,平行四边形的对称性,分式的定义,平均数,中位数等知识点,熟悉相关性质是解题的关键.7. 不等式组的解集在数轴上表示正确的是()A. B. C. D. 【答案】C【解析】【分析】先分别求出两个不等式的解,得出不等式组的解,再在数轴上的表示出解集即可.【详解】解: 解不等式①得,解不等式②得,不等式组的解集为,在数轴上表示为,故选:C.【点睛】本题考查了一元一次不等式组的解法和解集的表示,解题关键是熟练运用解不等式组的方法求解,准确在数轴上表示解集.8. 如图,在矩形ABCD中,AB=5,AD=3,点E为BC上一点,把△CDE沿DE翻折,点C 恰好落在AB边上的F处,则CE的长是( ) A. 1B.
上传时间:2023-05-08 页数:31
465人已阅读
(5星级)
2021年贺州市中考试题一、选择题(下列各题的四个备速答案中只有一个是最符合题意的,请速出来填涂在答题卡内相对应的代号字母中,每小题2分,共28分)1. 2021年4月29日,第十三届全国人大常委会第二十八次会议表决通过了《中华人民共和国乡村振兴促进法》。这是全国人大常委会在行使()A. 立法权B. 决定权C. 任免权D. 监督权【答案】A【解析】【详解】本题考查人民代表大会的职权。A:分析题干联系教材内容可知,全国人大及其常委会行使国家立法权,第十三届全国人大常委会第二十八次会议表决通过了《中华人民共和国乡村振兴促进法》这是全国人大常委会行使立法权的体现,所以A正确;BCD:决定权是指国家权力机关讨论、决定重大事项的权力;任免权是指各级人大和县级以上各级人大常委会依据宪法和法律享有对相关国家机关领导人员及其他组成人员进行选举、决定、罢免的权力;监督权是指全国人大及其常委会有权监督宪法和法律的实施,县级以上人大及其常委会有权监督本级国家行政、监察、审判及检察机关的工作,此三项权力均与题干无关,所以BCD错误;故本题选A。2. 漫画启示我们()①只要创新就能成为制造强国②中国发展面临新的机遇和挑战③要抓住机遇,审时度势,顺势而为④中国制造在新的历史条件下需要转型升级A. ①②③B. ①②④C. ①③④D. ②③④【答案】D【解析】【详解】本题考查我国面临机遇和挑战的做法。②③④:分析漫画联系教材内容可知,我国当前发展面临着新的机遇和挑战,受全球经济大环境的影响以及企业劳动力成本上升,中国制造在新的历史条件下需要转型升级,因此我们要抓住机遇,勇于创新,审时度势,赢得主动,所以②③④正确;①:此说法过于绝对,所以①错误;故本题选D。3. 2021年,新修订的《中华人民共和国动物防疫法》、《中华人民共和国未成年人保护法》、《中华人民共和国教育法》等法律法规相继颁布施行。这表明我国()①坚持厉行法治②已经做到良法善治③全面推进依法治国④社会主义法律体系不断得到完善A. ①②③B. ①②④C. ①③④D. ②③④【答案】C【解析】【详解】本题考查对法治的认识。①③④:分析题干联系教材内容可知,我国坚持全面依法治国的基本方略,全面依法治国必须厉行法治,推进科学立法、严格执法、公正司法、全民守法,题干中这几部法律的施行体现了我国科学立法,不断完善社会主义法律体系,所以①③④正确;②:题干只体现了良法,并没有体现善治,所以②错误;故本题选C。4. 根据《新时代爱国主义教育实施纲要》的精神,全国大中小学广泛组织开展了一系列爱国主义教育活动。当代中国,爱国主义的本质就是()A. 中华民族精神B. 实现中国梦的物质基础C. 实现中华民族伟大复兴的强大精神动力D. 坚持爱国和爱党, 爱社会主义的高度统一【答案】D【解析】【详解】本题考查爱国主义的本质。D:由教材内容可知,当代中国,爱国主义的本质就是坚持爱国和爱党、爱社会主义高度统一,所以D正确;ABC:此三项与教材内容不符,所以ABC错误;故本题选D。5. 中国不会关起门来也不可能关起门来搞建设,开放的大门只会越开越大。下列体现中国开放的大门越开越大的是()①降低进口关税,依赖产品进口②坚定不移奉行互利共赢的开放战略③加强国际合作,推动完善多边贸易体制④《海南自由贸易港建设总体方案》公布实施A. ①②③B. ①②④C. ①③④D. ②③④【答案】D【解析】【详解】本题考查对外开放。②③④:题文内容说明我国积极顺应经济全球化的发展趋势,坚持对外开放的基本国策,不断提高对外开放的水平。据此,奉行互利共赢的开放战略、完善多边贸易体制、《海南自由贸易港建设总体方案》公布实施符合我国对外开放的基本国策,所以②③④符合题意;①:做法违背对外开放的基本国策,①错误;故本题选D。6. 漫画警示我们要()①增强法律意识②理性参与网络生活③拒绝点击手机上的各种链接④提高自我防范意识和能力A. ①②③B. ①②④C. ①③④D. ②③④【答案】B【解析】【详解】本题考查对合理利用网络的认识。①②④:分析漫画联系教材内容可知,网络信息良莠不齐,我们在使用网络时应增强法律意识,提高自我防范能力,善于辨析网络信息,理性参与网络生活,所以①②④正确;③:此说法过于绝对,不是所有的链接都存在安全隐患,所以③错误;故本题选B。7. 2021年1月25日,习近平主席在北京以视频方式出席世界经济论坛对话会,并发表题为《让多边主义的火炬照亮人类前行之路》的特别致辞。他提出,要坚持开放包容,不搞封闭排他;坚持以国际法为准则,不搞唯我独尊;坚持协商合作,不搞时抗冲突。 对此,下列认识有误的是()A. 我国坚持走和平发展道路B. 我
上传时间:2023-05-08 页数:13
465人已阅读
(5星级)
黑龙江省龙东地区2021年初中毕业学业统一考试(农垦·森工)道德与法治试题考生注意:1.考试时间90分钟2.全卷共五道大题,总分100分一、单项选择题(下列各题的四个选项中,有一个是最符合题意的,请选出,并将字母填入题后的括号内。第1—10小题,每小题1分;第11—20小题,每小题2分。共30分)1. 2020年5月7日电,________已通过生态环境部组织的国家生态省建设试点验收,建成中国首个生态省。()A. 浙江省B. 江苏省C. 山东省D. 福建省2. 2020年6月5日,是第49个世界环境日。世界主题是关爱自然,刻不容缓,我国主题是________。()A. 美丽中国,你我同行B. 关爱自然,我是行动者C. 美丽中国,我是行动者D. 关爱自然,你我同行3. 2020年8月11日,国家主席习近平签署主席令,授予钟南山________,授予张伯礼、张定宇、陈薇(女)人民英雄国家荣誉称号。()A. 共和国勋章B. 时代楷模C. 全国劳动模范D. 友谊勋章4. 2020年9月1日出版的第17期《求是》杂志发表国家主席习近平的重要文章《________是落实立德树人根本任务的关键课程》。()A. 劳动课B. 语文课C. 历史课D. 思政课5. 2021年3月13日,在自由式滑雪女子U型场地决赛中,________以93分夺得冠军,这是她个人首枚世锦赛金牌,也是中国队在该项目中的世锦赛首金。()A. 张亮B. 谷爱凌C. 孙扬D. 张常宁6. 2020年12月17日,我国单独申报的________、我国与马来西亚联合申报的送王船——有关人与海洋可持续联系的仪式及相关实践两个项目被列入联合国教科文组织非物质文化遗产名录。()A. 京剧B. 中国功夫C. 太极拳D. 丝绸7. 2021年1月22日,________高铁全线贯通。此线贯通后北京至沈阳的列车最短运行时间将缩短至2.5小时。()A. 京港B. 京广C. 京哈D. 京沪8. 2021年1月10日是第一个中国人民________。()A. 医师节B. 护士节C. 记者节D. 警察节9. 2020年11月10日,我国________全海深载人潜水器顺利下潜至地球海洋最深处,在太平洋马里亚纳海沟成功坐底,谷底深度10909米,创造了中国载人深潜的新纪录。()A. 北斗三号B. 嫦娥五号C. 海斗一号D. 奋斗者号10. 2021年1月20日,美国当选总统、民主党人________在首都华盛顿宣誓就任美国第46任总统。()A. 特朗普B. 拜登C. 哈里斯D. 奥巴马11. 宪法规定广泛的公民基本权利,国家制定资助政策不让一个学生因家庭经济困难而失学。这从制度上保障公民享有()A. 财产权B. 受教育权C. 劳动权D. 选举权和被选举权12. 我国根据宪法建立起来的一整套国家机关体系,既是人民意志的执行者,又是人民利益的捍卫者。下列属于国家审判机关的是()A. 人民代表大会B. 监察委员会C. 人民法院D. 人民政府13. 每年召开的全国两会是民意的荟萃,是群众意见、建议最为集中的表达。这体现了社会主义民主政治的本质特征是()A. 人民当家作主B. 民主协商C. 民主决策D. 民主管理14. 2020年5月28日,十三届全国人大三次会议表决通过了《中华人民共和国民法典》,自2021年1月1日起施行。这说明了人民代表大会具有()A. 决定权B. 立法权C. 监督权D. 任免权15. 2020年1月12日,习近平总书记在浦东开发开放30周年庆祝大会上发表重要讲话,充分肯定浦东开发开放30年来取得的巨大成就,对浦东把握新的历史方位和使命、在新征程上推进高水平改革开放提出明确要求。下列关于改革开放说法正确的是()①改革开放是决定当代中国命运的关键抉择②改革开放是当代中国最鲜明的特色③改革开放只有进行时,没有完成时④改革开放可以解决中国发展中的一切问题A. ①②④B. ②③④C. ①③④D. ①②③16. 2020年11月1日,我国正式启动第七次全国人口普查。人口普查是我国人口发展进入关键期开展的一次重大国情国力调查。我国是世界上人口最多的国家,我国人口现状的基本特点是()A. 人口基数大,总人口增速趋缓B. 人口素质偏低,大量的人口流动C. 人口基数大,人口素质偏低D. 人口素质偏低,总和生育率明显低于更替水平17. 抗疫斗争铸就了生命至上、举国同心、舍生忘死、尊重科学、命运与共的伟大抗疫精神。习近平总书记强调,伟大的抗疫精神丰富了民族精神和时代精神的内涵。伟大的中华民族精神的核心是()A. 爱国主义
上传时间:2023-05-08 页数:7
465人已阅读
(5星级)
1.7 平方差公式(1)一、学习目标与要求:1、经历探索平方差公式的过程,进一步发展符号感和推理能力2、会推导平方差公式,并能运用公式进行简单的计算和推理二、重点与难点:重点:运用平方差公式进行简单的计算和推理难点:理解理解平方差公式及其探索过程三、学习过程:复习巩固:计算:(多项式乘多项式)(1) (2) (3) (-2x-y)2(4) (x+y)(x2-xy+y2)探索发现:一、探索平方差公式计算下列各题,并用自己的语言叙述你的发现(1) (x+2)(x-2)(2) (1+3a)(1-3a)(3) x+5y)(x-5y)(4) (y+3z)(y-3z)你的发现:__________________________________________________________________再举例验证你的发现:例:归纳:平方差公式:(a+b)(a-b)=__________________语言叙述:___________________________________________________________________老师的提示:人们把某些特殊形式的多项式相乘写成公式,加以记忆、套用,以使计算快速、简洁. 在运用公式的过程中,要准确的把握公式的特点,平方差公式的特点:左边是两个数的和乘这两个数的差,右边是这两个数的平方差,那么在运用公式时,认准这两个数就成了问题的关键. 分析下面式子,你能认出那一部分是两数和?那一部分是这两数的差?两个数分别是什么?结果应该是哪个数的平方减去哪个数的平方吗?(1) (5+6x)(5-6x)(2) (x-2y)(x+2y)(3) (-m+n)(-m-n)现在你能计算了吗?例1 利用平方差公式计算(1) (5+6x)(5-6x)(2) (x-2y)(x+2y)(3) (4) (-m+n)(-m-n)巩固练习1:利用平方差公式计算(1) (a+2)(a-2)(2) (3a+2b)(3a-2b)(3) (mn-3n)(mn+3n)(4) (–x-1)(-x+1)例2 利用平方差公式计算(1) (2) 巩固练习2:利用平方差公式计算(1) (-4k+3)(-4k-3)(2) (3) (-2b- 5) (2b -5)(4) x2+(y-x)(y+x)(5) (an+b)(an-b)(6) (a+1)(a-1)(a2+1)学习小结:给大家说一说你用平方差公式进行计算的体会
上传时间:2023-04-30 页数:3
465人已阅读
(5星级)
中考冲刺:几何综合问题(提高)一、选择题1. (2015春•江阴市校级期中)在平面直角坐标系中,直角梯形AOBC的位置如图所示,∠OAC=90°,AC∥OB,OA=4,AC=5,OB=6.M、N分别在线段AC、线段BC上运动,当△MON的面积达到最大时,存在一种使得△MON周长最小的情况,则此时点M的坐标为( ) A.(0,4) B.(3,4) C.(,4) D.(,3)2. 如图,△ABC和△DEF是等腰直角三角形,∠C=∠F=90°,AB=2,DE=4.点B与点D重合,点A,B(D),E在同一条直线上,将△ABC沿DE方向平移,至点A与点E重合时停止.设点B,D之间的距离为x,△ABC与△DEF重叠部分的面积为y,则准确反映y与x之间对应关系的图象是( ) A B C D二、填空题3. (2016•绥化)如图,在四边形ABCD中,对角线AC、BD相交于点E,∠DAB=∠CDB=90°,∠ABD=45°,∠DCA=30°,AB=,则AE=______(提示:可过点A作BD的垂线)1 4. 如图,一块直角三角形木板△ABC,将其在水平面上沿斜边AB所在直线按顺时针方向翻滚,使它滚动到△A″B″C″的位置,若BC=1cm,AC=cm,则顶点A运动到A″时,点A所经过的路径是_________cm.三、解答题5.(2017•莒县模拟)在边长为1的正方形ABCD中,点E是射线BC上一动点,AE与BD相交于点M,AE或其延长线与DC或其延长线相交于点F,G是EF的中点,连结CG.(1)如图1,当点E在BC边上时.求证:①△ABM≌△CBM;②CG⊥CM.(2)如图2,当点E在BC的延长线上时,(1)中的结论②是否成立?请写出结论,不用证明.(3)试问当点E运动到什么位置时,△MCE是等腰三角形?请说明理由.6. 如图,等腰Rt△ABC中,∠C=90°,AC=6,动点P、Q分别从A、B两点同时以每秒1个单位长的速度按顺时针方向沿△ABC的边运动,当Q运动到A点时,P、Q停止运动.设Q点运动时间为t秒,点P运动的轨迹与PQ、AQ围成图形的面积为S.求S关于t的函数解析式.27. 正方形ABCD中,点F为正方形ABCD内的点,△BFC绕着点B按逆时针方向旋转90°后与△BEA重合.(1)如图1,若正方形ABCD的边长为2,BE=1,FC=,求证:AE∥BF;(2)如图2,若点F为正方形ABCD对角线AC上的点,且AF:FC=3:1,BC=2,求BF的长. 8. 将正方形ABCD和正方形BEFG如图1摆放,连DF.(1)如图2,将图1中的正方形BEFG绕B点顺时针旋转90°,连DF、CG相交于M,则=_____,∠DMC=_____;(2)如图3,将图1中的正方形BEFG绕B点顺时针旋转45°,DF的延长线交CG于M,试探究与∠DMC的值,并证明你的结论; (3)若将图1中的正方形BEFG绕B点逆时针旋转β(0°<β<90°),则=_______,∠DMC=_________.请画出图形,并直接写出你的结论(不用证明).3 9. 已知△ABC≌△ADE,∠BAC=∠DAE=90°.(1)如图(1)当C、A、D在同一直线上时,连CE、BD,判断CE和BD位置关系,填空:CE_____BD.(2)如图(2)把△ADE绕点A旋转到如图所示的位置,试问(1)中的结论是否仍然成立,写出你的结论,并说明理由.(3)如图(3)在图2的基础上,将△ACE绕点A旋转一个角度到如图所示的△AC′E′的位置,连接BE′、DC′,过点A作AN⊥BE′于点N,反向延长AN交DC′于点M.求的值. 10. 将正方形ABCD和正方形CGEF如图1摆放,使D点在CF边上,M为AE中点,(1)连接MD、MF,则容易发现MD、MF间的关系是______________(2)操作:把正方形CGEF绕C点旋转,使对角线CE放在正方形ABCD的边BC的延长线上(CG>BC),取线段AE的中点M,探究线段MD、MF的关系,并加以说明;4 (3)将正方形CGEF绕点C旋转任意角度后(如图3),其他条件不变,(2)中的结论是否仍成立?直接写出猜想,不需要证明.答案与解析【答案与解析】一、选择题1.【答案】B.
上传时间:2023-04-30 页数:13
465人已阅读
(5星级)
中考冲刺:数形结合问题—巩固练习(提高)【巩固练习】一、选择题1.(2016•黄冈模拟)如图1为深50cm的圆柱形容器,底部放入一个长方体的铁块,现在以一定的速度向容器内注水,图2为容器顶部离水面的距离y(cm)随时间t(分钟)的变化图象,则()A.注水的速度为每分钟注入cm高水位的水B.放人的长方体的高度为30cmC.该容器注满水所用的时间为21分钟D.此长方体的体积为此容器的体积的2.若用(a)、(b)、(c)、(d)四幅图像分别表示变量之间的关系,请按图像所给顺序,将下面的①、②、③、④对应顺序.① 小车从光滑的斜面上滑下(小车的速度与时间的关系)② 一个弹簧不挂重物到逐渐挂重物(弹簧长度与所挂重物的重量的关系)③ 运动员推出去的铅球(铅球的高度与时间的关系)④ 小杨从A到B后,停留一段时间,然后按原速度返回(路程与时间的关系)正确的顺序是 ()A.③④②① B.①②③④C.②③①④D.④①③②二 填空题3. 如图,一种电子游戏,电子屏幕上有一正六边形ABCDEF,点P沿直线AB从右向左移动,当出现点P与正六边形六个顶点中的至少两个顶点距离相等时,就会发出警报,则直线 AB上会发出警报的点P有个.14.(2015秋•江阴市期中)如图1,圆的周长为4个单位.在该圆的4等分点处分别标上字母m、n、p、q.如图2,先将圆周上表示p的点与数轴原点重合,然后将该圆沿着数轴的负方向滚动,则数轴上表示﹣2014的点与圆周上重合的点对应的字母是.5.(2016•鄂州一模)如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒,设P、Q同时出发t秒时,△BPQ的面积为ycm2,已知y与t的函数关系图象如图(2),当t= 时,△ABE与△BQP相似.三、解答题6.将如图所示的长方体石块(a>b>c)放入一圆柱形水槽内,并向水槽内匀速注水,速度为vcm3/s,直至注满水槽为止.石块可以用三种不同的方式完全放入水槽内,如图所示. 2在这三种情况下,水槽内的水深h (cm)与注水时间 t( s)的函数关系如上图1-6所示.根据图象完成下列问题:(1)请分别将三种放置方式的示意图和与之相对应的函数关系图象用线连接起来;(2)水槽的高h= cm;石块的长a= cm;宽b= cm;高c= cm;(3)求图5中直线CD的函数关系式;(4)求圆柱形水槽的底面积S.7.在数学活动中,小明为了求的值(结果用n表示),设计如图1所示的几何图形.(1)请你利用这个几何图形求的值为_______;(2)请你利用图2,再设计一个能求的值的几何图形.8.(2015秋•北京校级期中)如图所示,在平面直角坐标系xOy中,△ABC的顶点B是y轴正半轴上一个定点,D是BO的中点.点C在x轴上,A在第一象限,且满足AB=AO,N是x轴负半轴上一点,∠BCN=BAO=α∠.(1)当点C在x轴正半轴上移动时,求∠BCA;(结果用含α的式子表示)(2)当某一时刻A(20,17)时,求OC+BC的值;(3)当点C沿x轴负方向移动且与点O重合时,α= ,此时 以AO为斜边在坐标平面内作一个RtAOE△(E不与D重合),则∠AED的度数的所有可能值有 .(直接写出结果)…(图1)(图2)39.阅读材料,解答问题.利用图象法解一元二次不等式:x2﹣2x﹣3>0.解:设y=x2﹣2x﹣3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3.∴由此得抛物线y=x2﹣2x﹣3的大致图象如图所示.观察函数图象可知:当x<﹣1或x>3时,y>0.∴x2﹣2x﹣3>0的解集是:x<﹣1或x>3.(1)观察图象,直接写出一元二次不等式:x2﹣2x﹣3<0的解集是 _________ ;(2)仿照上例,用图象法解一元二次不等式:x2﹣1>0(画出草图).10.(1)夜晚,小明在路灯下散步.已知小明身高1.5米,路灯的灯柱高4.5米.①如图1,若小明在相距10米的两路灯AB、CD之间行走(不含两端),他前后的两个影子长分别为FM=x米,FN=y米,试求y与x之间的函数关系式,并指出自变量x的取值范围?②有言道:形影不离.其原意为:人的影子与自己紧密相伴,无法分离.但在灯光下,人的速度与影子的速度却不是一样的!如图2,若小明在灯柱PQ前,朝着影子的方向(如图箭头),以0.
上传时间:2023-04-30 页数:11
465人已阅读
(5星级)
相似多边形及位似--巩固练习【巩固练习】一. 选择题1.下面给出了相似的一些命题:(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相似;(5)正六边形都相似;其中正确的有()A.2个 B.3个C.4个 D.5个2.下列说法错误的是( ). A.位似图形一定是相似图形.B.相似图形不一定是位似图形. C.位似图形上任意一对对应点到位似中心的距离之比等于相似比. D.位似图形中每组对应点所在的直线必相互平行.3.下列说法正确的是( ) A.分别在ABC的边AB、AC的反向延长线上取点D、E,使DE∥BC,则ADE 是ABC放大后的图形.B.两位似图形的面积之比等于相似比. C.位似多边形中对应对角线之比等于相似比. D.位似图形的周长之比等于相似比的平方.4.平面直角坐标系中,有一条鱼,它有六个顶点,则( ) A.将各点横坐标乘以2,纵坐标不变,得到的鱼与原来的鱼位似. B.将各点纵坐标乘以2,横坐标不变,得到的鱼与原来的鱼位似. C.将各点横、纵坐标都乘以2,得到的鱼与原来的鱼位似. D.将各点横坐标乘以2,纵坐标乘以,得到的鱼与原来的鱼位似.5.(2015•杭州模拟)如图,四边形ABCD∽四边形A1B1C1D1,AB=12,CD=15,A1B1=9,则边C1D1的长是()A. 10 B. 12C.D. 6.如果点C为线段AB的黄金分割点,且AC>BC,则下列各式不正确的是()A. AB:AC=AC:BCB. AC=512ABC.AB=512AC D.BC≈0.618AB7.已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=()A. 512B. 512 C.3D.21二. 填空题8. 如果两个位似图形的对应线段长分别为3cm和5cm,且较小图形周长为30cm,则较大图形周长为___ ___. 9.已知ABC,以点A为位似中心,作出ADE,使ADE是ABC放大2倍的图形,则这样的图形可以作出______个,它们之间的关系是__________.10.如图,以点O为位似中心,将五边形ABCDE放大后得到五边形ABCDE,已知OA=10cm,OA′=20cm,则五边形ABCDE的周长与五边形ABCDE的周长的比值是__________. 11. △ABC中,D、E分别在AB、AC上,DE∥BC,△ADE是△ABC缩小后的图形.若DE把△ABC的面积分成相等的两部分,则AD:AB=________.12.(2015春•庆阳校级月考)图中的两个四边形相似,则x+y=,α=.13.如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1,取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分,取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图(3)中阴影部分,如此下去…,则正六角星形A4F4B4D4C4E4的面积为__________________.214. 如图,△ABC中,AB=AC=4,∠BAC=36°,∠ABC的平分线与AC边的交点D为边AC的黄金分割点(AD>DC),则BC=______________.三. 综合题15.如图,D、E分别AB、AC上的点. (1)如果DE∥BC,那么△ADE和 △ABC是位似图形吗?为什么? (2)如果△ADE和 △ABC是位似图形,那么DE∥BC吗?为什么? 16.(2014•南通)如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EB,GD.(1)求证:EB=GD;(2)若∠DAB=60°,AB=2,AG=,求GD的长.317. 如图1,矩形ODEF的一边落在矩形ABCO的一边上,并且矩形ODEF∽矩形ABCO,其相似比为1:4,矩形ABCO的边AB=4,BC=43.(1)求矩形ODEF的面积;(2)将图1中的矩形ODEF绕点O逆时针旋转一周,连接EC、EA,△ACE的面积是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,请说明理由.【答案与解析】一、选择题1.【答案】B【解析】(1)菱形的角不一定对应相等,故错误;(2)(3)(5)符合相似的定义,故正确;(4)对应边的比不一定相等.故错误. 故正确的是:(2)(3)(5).故选B.2.【答案】D.3.【答
上传时间:2023-04-30 页数:7
465人已阅读
(5星级)
与三角形有关的线段(提高)巩固练习【巩固练习】一、选择题1.如果三条线段的比是:①1:3:4;②1:2:3;③1:4:6;④3:3:6;⑤6:6:10;⑥3:4:5,其中可构成三角形的有( )A.1个B.2个C.3个D.4个2.一个三角形的周长是偶数,其中的两条边分别为5和9,则满足上述条件的三角形个数为()A.2个B.4个C.6个D.8个3.(2016春•成安县期末)下列说法正确的是()①三角形的三条中线都在三角形内部;②三角形的三条角平分线都在三角形内部;③三角形三条高都在三角形的内部.A.①②③B.①②C.②③D.①③4.如图,AC⊥BC,CD⊥AB,DE⊥BC,则下列说法中错误的是()A.在△ABC中,AC是BC边上的高B.在△BCD中,DE是BC边上的高C.在△ABE中,DE是BE边上的高D.在△ACD中,AD是CD边上的高5.(2015春•南长区期中)有4根小木棒,长度分别为3cm、5cm、7cm、9cm任意取其中的3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为() A.2个 B.3个C.4个 D.5个6.给出下列图形:其中具有稳定性的是( )A.①B.③C.②③D.②③④7.如图所示为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为214平方公分,则此方格纸的面积为多少平方公分? ( )A.11B.12C.13D.1418.王师傅用4根木条钉成一个四边形木架.如图所示,要使这个木架不变形,他至少要再钉上几根木条?( )A.0根B.1根C.2根D.3根二、填空题9.(2014春•渝北区期末)对面积为1的△ABC进行以下操作:分别延长AB、BC、CA至点A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1(如图所示),记其面积为S1.现再分别延长A1B1、B1C1、C1A1至点A2、B2、C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2、B2、C2,得到△A2B2C2,记其面积为S2,则S2=.10.三角形的两边长分别为5 cm和12 cm,第三边与前两边中的一边相等,则三角形的周长为________.11.(2016春•丹阳市校级期中)如图,AD⊥BC于D,那么图中以AD为高的三角形有 个.12.在数学活动中,小明为了求23411112222…12n的值(结果用n表示),设计了如图所示的几何图形.请你利用这个几何图形求23411112222…12n=________.13.请你观察下图的变化过程,说明四边形的四条边一定时,其面积________确定.(填2能或不能)14.如图,是用四根木棒搭成的平行四边形框架,AB=8cm,AD=6cm,使AB固定,转动AD,当∠DAB=_____时,ABCD的面积最大,最大值是________.三、解答题15.草原上有4口油井,位于四边形ABCD的四个顶点上,如图所示,如果现在要建一个维修站H,试问H建在何处,才能使它到4口油井的距离之和HA+HB+HC+HD为最小,说明理由.16.取一张正方形纸片,把它裁成两个等腰直角三角形,取出其中一张如图①,再沿着直角边上的中线AD按图②所示折叠,则AB与DC相交于点G.试问:△AGC和△BGD的面积哪个大?为什么?17. 已知AD是△ABC的高,∠BAD=70°,∠CAD=20°,(1)求∠BAC的度数.(2)△ABC是什么三角形.18. (2014春•西城区期末)阅读下列材料:某同学遇到这样一个问题:如图1,在△ABC中,AB=AC,BD是△ABC的高.P是BC边上一点,PM,PN分别与直线AB,AC垂直,垂足分别为点M,N.求证:BD=PM+PN.他发现,连接AP,有S△ABC=S△ABP+S△ACP,即AC•BD=AB•PM+AC•PN.由AB=AC,可得BD=PM+PN.他又画出了当点P在CB的延长线上,且上面问题中其他条件不变时的图形,如图2所示.他猜想此时BD,PM,PN之间的数量关系是:BD=PNPM﹣.3请回答:(1)请补全以下该同学证明猜想的过程;证明:连接AP.∵S△ABC=S△APC﹣,∴AC•BD=AC• ﹣AB•.∵AB=AC,∴BD=PNPM﹣.(2)参考该同学思考问题的方法,解决下列问题:在△ABC
上传时间:2023-04-30 页数:7
465人已阅读
(5星级)
客服
客服QQ:
2505027264
客服电话:
18182295159(不支持接听,可加微信)
微信小程序
微信公众号
回到顶部