

中考冲刺:几何综合问题—巩固练习(基础)【巩固练习】一、选择题1.(2016•天水)如图,边长为2的等边△ABC和边长为1的等边△A′B′C′,它们的边B′C′,BC位于同一条直线l上,开始时,点C′与B重合,△ABC固定不动,然后把△A′B′C′自左向右沿直线l平移,移出△ABC外(点B′与C重合)停止,设△A′B′C′平移的距离为x,两个三角形重合部分的面积为y,则y关于x的函数图象是()A.B. C. D.2.如图,将直角三角形ABC沿着斜边AC的方向平移到△DEF的位置(A、D、C、F四点在同一条直线上).直角边DE交BC于点G.如果BG=4,EF=12,△BEG的面积等于4,那么梯形ABGD的面积是()A.16B.20C.24D.28二、填空题3.(2016•海淀区二模)据传说,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度.如图所示,木杆EF的长为2m,它的影长FD为3m,测得OA为201m,则金字塔的高度BO为 m.4.如图,线段AB=8cm,点C是AB上任意一点(不与点A、B重合),分别以AC、BC为斜边在AB的同侧作等腰直角三角形(△AMC和△CNB),则当BC=_____________cm时,两个等腰直角三角形的面积和最小.三、解答题15.有一根直尺的短边长2cm,长边长10cm,还有一块锐角为45°的直角三角形纸板,它的斜边长12cm.如图①,将直尺的短边DE与直角三角形纸板的斜边AB重合,且点D与点A重合; 将直尺沿AB方向平移(如图②),设平移的长度为xcm( 0≤x≤0 ),直尺和三角形纸板的重叠部分(图中阴影部分)的面积为Scm2.(1)当x=0时(如图①),S=________;(2)当0<x≤4时(如图②),求S关于x的函数关系式;(3)当4<x<6时,求S关于x的函数关系式;(4)直接写出S的最大值.6. 问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)特例探究:如图②,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证:△ABD≌△CAE.归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数. 7.如图正三角形ABC的边长为6cm,⊙O的半径为rcm,当圆心O从点A出发,沿着线路AB-BC-CA运动,回到点A时,⊙O随着点O的运动而移动.⑴若r=3cm,求⊙O首次与BC边相切时,AO的长;2⑵在⊙O移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同情况下r的取值范围及相应的切点的个数;⑶设⊙O在整个移动过程中,在△ABC内部,⊙O未经过的部分面积为S,在S>0时,求关于r的函数解析式,并写出自变量r的取值范围.8.(2015•德州)(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=A=B=90°∠∠,求证:AD•BC=AP•BP.(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=A=B=θ∠∠时,上述结论是否依然成立?说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=5,点P以每秒1个单位长度的速度,由点A出了,沿边AB向点B运动,且满足∠DPC=A∠,设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切时,求t的值.9.如图,直角梯形ABCD中,AD∥BC,∠B=90°,AB=12 cm,BC=9 cm,DC=13 cm,点P是线段AB上一个动点.设BP为x cm,△PCD的面积为y cm2.(1)求AD 的长;(2)求y与x之间的函数关系式,并求出当x为何值时,y有最大值?最大值是多少?(3)在线段AB上是否存在点P,使得△PCD是直角三角形?若存在,求出x的值;若不存在,请说明理由.A(O)OBC3 10.如图,平行四边形ABCD中,AB=10,AD=6,∠A=60°,点P从点A出发沿边线AB—BC以每秒1个单位长的速度向点C运动,当P与C重合时停下运动,过点P作AB的垂线PQ交AD或DC于Q.设P运动时间为t秒,直线PQ扫过平行四边形ABCD的面积为S.求S关于t的函数解析式. 【答案
上传时间:2023-04-30 页数:11
325人已阅读
(5星级)
图形的旋转--知识讲解【学习目标】1、掌握旋转的概念,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中 心连线所成的角彼此相等的性质;2、能够按要求作出简单平面图形旋转后的图形,并能利用旋转进行简单的图案设计.【要点梳理】要点一、旋转的概念 把一个图形绕着某一点O转动一个角度的图形变换叫做旋转..点O叫做旋转中心,转动的角叫做旋转角(如∠AO A′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点. 要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.要点二、旋转的性质(1)对应点到旋转中心的距离相等(OA= OA′);(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等(△ABC≌△).要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.要点三、旋转的作图在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释: 作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.【典型例题】类型一、旋转的概念与性质1. 如图,把四边形AOBC绕点O旋转得到四边形DOEF. 在这个旋转过程中:(1)旋转中心是谁? (2)旋转方向如何?(3)经过旋转,点A、B的对应点分别是谁?(4)图中哪个角是旋转角?(5)四边形AOBC与四边形DOEF的形状、大小有何关系?(6) AO与DO的长度有什么关系? BO与EO呢?(7)∠AOD与∠BOE的大小有什么关系?1【答案与解析】(1)旋转中心是点O;(2)旋转方向是顺时针方向;(3)点A的对应点是点D,点B的对应点是点E;(4)∠AOD和∠BOE;(5) 四边形AOBC与四边形DOEF的图形全等,即形状一致,大小相等;(6)AO=DO,BO=EO;(7)∠AOD=∠BOE.【总结升华】通过具体实例认识旋转,了解旋转的概念和性质.举一反三【变式】 如图所示:O为正三角形ABC的中心.你能用旋转的方法将△ABC分成面积相等的三部分吗?如果能,设计出分割方案,并画出示意图. 【答案】下面给出几种解法:解法一:连接OA、OB、OC即可.如图甲所示;解法二:在AB边上任取一点D,将D分别绕点O旋转120°和240°得到D1、D2,连接OD、OD1、OD2即得,如图乙所示. 解法三:在解法二中,用相同的曲线连结OD、OD1、OD2 即得如图丙所示 2.(2015•枣庄)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是() A.B.C.D.1﹣2【思路点拨】连接AC1,AO,根据四边形AB1C1D1是正方形,得出∠C1AB1=AC∠1B1=45°,求出∠DAB1=45°,推出A、D、C1三点共线,在RtC△1D1A中,由勾股定理求出AC1,进而求出DC1=OD,根据三角形的面积计算即可.【答案】D.【解析】解:连接AC1,∵四边形AB1C1D1是正方形,∴∠C1AB1=×90°=45°=AC∠1B1,∵边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,∴∠B1AB=45°,∴∠DAB1=90°45°=45°﹣,∴AC1过D点,即A、D、C1三点共线,∵正方形ABCD的边长是1,∴四边形AB1C1D1的边长是1,在RtC△1D1A中,由勾股定理得:AC1==,则DC1=1﹣,∵∠AC1B1=45°,∠C1DO=90°,∴∠C1OD=45°=DC∠1O,∴DC1=OD=1﹣,∴SADO=△×OD•AD=,∴四边形AB1OD的面积是=2×=1﹣,故选:D.【总结升华】本题考查了正方形及旋转的性质等知识点,主要考查学生运用性质进行计算的能力,正确的作出辅助线是解题的关键.类型二、旋转的作图3. 如图,已知△ABC与△DEF关于某一点对称,作出对称中心.3【答案与解析】 【总结升华】确定关于某点成中心对称的两个图形的对称中心的方法:⑴利用中心对称的性质:对称点所连线段被对称中心所平分,所以连接任意一对对称点,取这条线段的中点,则该点即为对称中心.⑵利用中心对称的性质:对称点所连线段都经过对称中心,所以连接任意两对对称点,则这两条线段的交点即为对称中心.4.(2015•眉山)如图,在方格网中已知格点△ABC和点O.(1)画△A′B′C′和△ABC关于点O成中心对称;(2
上传时间:2023-04-30 页数:6
325人已阅读
(5星级)
用函数观点看一元二次方程—知识讲解(提高)【学习目标】1.会用图象法求一元二次方程的近似解;掌握二次函数与一元二次方程的关系;2.会求抛物线与x轴交点的坐标,掌握二次函数与不等式之间的联系;3.经历探索验证二次函数与一元二次方程的关系的过程,学会用函数的观点去看方程和用数形结合的思想去解决问题. 【要点梳理】要点一、二次函数与一元二次方程的关系1.二次函数图象与x轴的交点情况决定一元二次方程根的情况求二次函数(a≠0)的图象与x轴的交点坐标,就是令y=0,求中x的值的问题.此时二次函数就转化为一元二次方程,因此一元二次方程根的个数决定了抛物线与x轴的交点的个数,它们的关系如下表:判别式二次函数一元二次方程图象与x轴的交点坐标根的情况△>0抛物线与x轴交于,两点,且,此时称抛物线与x轴相交一元二次方程有两个不相等的实数根△=0抛物线与x轴交切于这一点,此时称抛物线与x轴相切一元二次方程有两个相等的实数根△<0抛物线与x轴无交点,此时称抛物线与x轴相离一元二次方程在实数范围内无解(或称无实数根)1 要点诠释: 二次函数图象与x轴的交点的个数由的值来确定的. (1)当二次函数的图象与x轴有两个交点时,,方程有两个不相等的实根;(2)当二次函数的图象与x轴有且只有一个交点时,,方程有两个相等的实根;(3)当二次函数的图象与x轴没有交点时,,方程没有实根.2.抛物线与直线的交点问题抛物线与x轴的两个交点的问题实质就是抛物线与直线的交点问题.我们把它延伸到求抛物线(a≠0)与y轴交点和二次函数与一次函数的交点问题.抛物线(a≠0)与y轴的交点是(0,c).抛物线(a≠0)与一次函数(k≠0)的交点个数由方程组的解的个数决定. 当方程组有两组不同的解时两函数图象有两个交点; 当方程组有两组相同的解时两函数图象只有一个交点; 当方程组无解时两函数图象没有交点. 总之,探究直线与抛物线的交点的问题,最终是讨论方程(组)的解的问题.要点诠释:求两函数图象交点的问题主要运用转化思想,即将函数的交点问题转化为求方程组解的问题或者将求方程组的解的问题转化为求抛物线与直线的交点问题.要点二、利用二次函数图象求一元二次方程的近似解用图象法解一元二次方程的步骤:1.作二次函数的图象,由图象确定交点个数,即方程解的个数;2. 确定一元二次方程的根的取值范围.即确定抛物线与x轴交点的横坐标的大致范围;3. 在(2)确定的范围内,用计算器进行探索.即在(2)确定的范围内,从大到小或从小到大依次取值,用表格的形式求出相应的y值.4.确定一元二次方程的近似根.在(3)中最接近0的y值所对应的x值即是一元二次方的近似根.要点诠释:求一元二次方程的近似解的方法(图象法):2 (1)直接作出函数的图象,则图象与x轴交点的横坐标就是方程的根; (2)先将方程变为再在同一坐标系中画出抛物线和直线图象交点的横坐标就是方程的根; (3)将方程化为,移项后得,设和,在同一坐标系中画出抛物线和直线的图象,图象交点的横坐标即为方程的根.要点三、抛物线与x轴的两个交点之间的距离公式当△>0时,设抛物线与x轴的两个交点为A(,0),B(,0),则、是一元二次方程的两个根.由根与系数的关系得,.∴即(△>0).要点四、抛物线与不等式的关系二次函数(a≠0)与一元二次不等式(a≠0)及(a≠0)之间的关系如下:判别式抛物线与x轴的交点不等式的解集不等式的解集△>0或3△=0(或)无解△<0全体实数无解注:a<0的情况请同学们自己完成.要点诠释:抛物线在x轴上方的部分点的纵坐标都为正,所对应的x的所有值就是不等式的解集;在x轴下方的部分点的纵坐标都为负,所对应的x的所有值就是不等式的解集.不等式中如果带有等号,其解集也相应带有等号.【典型例题】类型一、二次函数图象与坐标轴交点1. 已知抛物线.求:(1)k为何值时,抛物线与x轴有两个交点;(2)k为何值时,抛物线与x轴有唯一交点;(3)k为何值时,抛物线与x轴没有交点. 【答案与解析】.(1)当,且,即当k>-3且k≠-1时,抛物线与x轴有两个交点.(2)当,且2(k+1)≠0.即当k=-3时,抛物线与x轴有唯一交点.(3)当b2-4ac=8k+24<0,且2(k+1)≠0.即当k<-3时,抛物线与x轴不相交.【总结升华】根据抛物线与x轴的交点个数可确定字母系数的取值范围,其方法是根据抛物线与x轴的交点个数,推出△值的性质,即列出关于字母系数的方程(或不等式),通过方程(或不等式)求解. 特别提醒:易忽视二次项系数2(k+1)≠0这一隐含条件.举一反三:用函数观点看一元二次方程356568 例1-2】【变式】(2014秋•越秀区期
上传时间:2023-04-30 页数:9
325人已阅读
(5星级)
解直角三角形及其应用--巩固练习【巩固练习】一、选择题1.在△ABC中,∠C=90°,,则tan B=().A. B.C.D.2.(2016•绍兴)如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A.B.C.D.3.河堤、横断面如图所示,堤高BC=5米,迎水坡AB的坡比是1:(坡比是坡面的铅直高度BC与水平宽度AC之比),则AC的长是().A.米B.10米C.15米 D.米4.如图所示,正方形ABCD中,对角线AC、BD交于点O,点M、N分别为OB、OC的中点,则cos∠OMN的值为(). A.B. C. D.1 第3题第4题第5题5.如图所示,某游乐场一山顶滑梯的高为h,滑梯的坡角为α,那么滑梯长为 ()A.B.C.D.6.如图所示,在△ABC中,∠C=90°,AC=16 cm,AB的垂直平分线MN交AC于D,连接BD,若,则BD的长是().A.4 cm B.6 cmC.8 cm D.10 cm7.如图所示,一艘轮船由海平面上A地出发向南偏西40°的方向行驶40海里到达B地,再由B地向北偏西的方向行驶40海里到达C地,则A、C两地相距(). A.30海里 B.40海里 C.50海里 D.60海里1第6题第7题第8题8.如图所示,为了测量河的宽度,王芳同学在河岸边相距200 m的M和N两点分别测定对岸一棵树P的位置,P在M的正北方向,在N的北偏西30°的方向,则河的宽度是().A.mB.m C.m D.100m二、填空题9.(2015•揭西县一模)在菱形ABCD中,DEAB⊥,,BE=2,则tanDBE∠的值是.10.如图所示,等边三角形ABC中,D、E分别为AB、BC边上的点,AD=BE,AE与CD交于点F,AG⊥CD于点G,则的值为________. 11.如图所示,一艘海轮位于灯塔P的东北方向,距离灯塔海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则海轮行驶的路程AB为________海里(结果保留根号).12.如图所示,直角梯形ABCD中,AB⊥BC,AD∥BC,BC>AD,AD=2,AB=4,点E在AB上,将△CBE沿CE翻折,使B点与D点重合,则∠BCE的正切值是________.13.如图所示.线段AB、DC分别表示甲、乙两座建筑物的高.AB⊥BC,DC⊥BC,两建筑物间距离BC=30米,若甲建筑物高AB=28米,在A点测得D点的仰角α=45°,则乙建筑物高DC=____米.2第12题 第13题 第14题14.在一次夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了200m到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图所示),那么,由此可知,B、C两地相距________m.三、解答题15.如图所示,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).16. (2016•包头)如图,已知四边形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延长线与AD的延长线交于点E.(1)若∠A=60°,求BC的长;(2)若sinA=,求AD的长.(注意:本题中的计算过程和结果均保留根号)17.(2015•资阳)北京时间2015年04月25日14时11分,尼泊尔发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢
上传时间:2023-04-30 页数:7
325人已阅读
(5星级)
【巩固练习】一、选择题1.手电筒射出的光线,给我们的形象是().A.直线B.射线C.线段D.折线2.下列各图中直线的表示法正确的是().3.点P在线段EF上,现有四个等式①PE=PF;②PE=12EF;③12EF=PE;④2PE=EF;其中能表示点P是EF中点的有( ) A.4个B.3个 C.2个D.1个4.如图中分别有直线、射线、线段,能相交的是().5.(2015•黄冈中学自主招生)如图,点A、B、C顺次在直线l上,点M是线段AC的中点,点N是线段BC的中点.若想求出MN的长度,那么只需条件() A.AB=12B.BC=4C.AM=5D.CN=26.(2016•宜昌)如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短二、填空题7. (2016春•威海期中)平面内不同的两点确定一条直线,不同的三点最多确定三条直线,平面内不同的六个点最多可确定 条直线.8.在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是.19. 如图所示,数一数,图中共有________条线段,________条射线,________条直线,其中以B为端点的线段是________;经过点D的直线是________,可以表示出来的射线有________条.10.如图所示,(1)AC=BC+ ;(2)CD=AD-;(3)CD=-BC;(4)AB+BC= -CD.11. 如图所示,直线_______和直线______相交于点P;直线AB和直线EF相交于点______;点R是直线________和直线________的交点.12.如图,若CB=4cm,DB=7cm,且D是AC的中点,则AC=cm.三、解答题13.根据下列语句画出图形:(1)直线L经过A、B、C三点,点C在点A与点B之间;(2)两条直线m与n相交于点P;(3)线段a、b相交于点O,与线段c分别交于点P、Q.14.如图,已知AB=2cm,延长线段AB至点C,使BC=2AB,点D是线段AC的中点,用刻度尺画出图形,并求线段BD的长度.15.已知:如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若线段AC=6,BC=4,求线段MN的长度;(2)若AB=a,求线段MN的长度;(3)若将(1)小题中点C在线段AB上改为点C在直线AB上,(1)小题的结果会有变化吗?求出MN的长度.【答案与解析】2一、选择题1.【答案】B【解析】手电筒本身看作射线的端点,射出的光线看作向前方无限延伸.2.【答案】C【解析】要牢记直线、射线、线段的表示方法.3.【答案】A【解析】点P是线段AB的中点,表示方法不唯一.4.【答案】B5.【答案】A.【解析】根据点M是线段AC的中点,点N是线段BC的中点,可知:,∴只要已知AB即可.6.【答案】D;【解析】解:∵用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选D.二、填空题7. 【答案】15; 【解析】解:平面内不同的六个点最多可确定 6(61)215条直线.故答案为:15.8. 【答案】两点之间线段最短. 【解析】线段的性质:两点之间线段最短.9. 【答案】6 ,18, 4,线段AB、线段BC、线段BD;直线AD、直线BD、直线CD,10【解析】注意利用线段、射线、直线的表示法进行区别.10.【答案】AB, AC,BD,AD11.【答案】AB,CD,O,CD,EF12.【答案】6.三、解答题13.【解析】 解:(1) (2)3(3)14.【解析】解:如图:,由BC=2AB,AB=2cm,得BC=4cm,由线段的和差,得AC=AB+BC=2+4=6cm,由点D是线段AC的中点,得AD=AC=×6=3cm.由线段的和差,得BD=AD﹣AB=3﹣2=1cm.15. 【解析】解:(1)∵AC=6,BC=4,∴AB=6+4=10又∵点M是AC的中点,点N是BC的中点,∴MC=AM=AC,CN=BN=BC,∴MN=MC+CN=AC+BC=(AC+BC)=AB=5(cm).(2)由(1)中已知AB=10cm求出MN=
上传时间:2023-04-30 页数:4
325人已阅读
(5星级)
2021年辽宁省本溪市中考数学试卷一、选择题(本题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. -5的相反数是( )A. B. C. 5D. -5【答案】C【解析】【分析】根据相反数的定义解答即可.【详解】-5的相反数是5故选C【点睛】本题考查了相反数,熟记相反数的定义:只有符号不同的两个数互为相反数是关键.2. 下列漂亮的图案中似乎包含了一些曲线,其实它们这种神韵是由多条线段呈现出来的,这些图案中既是中心对称图形又是轴对称图形的是()A. B. C. D. 【答案】A【解析】【分析】根据中心对称图形及轴对称图形的概念即可解答.【详解】选项A,是中心对称图形,也是轴对称图形,符合题意;选项B,不是中心对称图形,是轴对称图形,不符合题意;选项C,不是中心对称图形,是轴对称图形,不符合题意;选项D,不是中心对称图形,是轴对称图形,不符合题意.故选A.【点睛】本题考查了中心对称图形及轴对称图形的概念,熟练运用中心对称图形及轴对称图形的概念是解决问题的关键.3. 下列运算正确的是()A. B. C. D. 【答案】B【解析】【分析】根据同底数幂乘法法则、积的乘方的运算法则、同底数幂的除法法则及合并同类项法则逐一计算即可得答案.【详解】选项A,根据同底数幂乘法法则可得,选项A错误;选项B,根据积的乘方的运算法则可得,选项B正确;选项C,根据同底数幂的的除法法则可得,选项C错误;选项D,与x不是同类项,不能合并,选项D错误.故选B.【点睛】本题考查了同底数幂乘法法则、积的乘方的运算法则、同底数幂的除法法则及合并同类项法则,熟练运用法则是解决问题的关键.4. 如图,该几何体的左视图是()A. B. C. D. 【答案】D【解析】【分析】画出从左面看到的图形即可.【详解】解:该几何体的左视图是一个长方形,并且有一条隐藏的线用虚线表示,如图所示:,故选:D.【点睛】本题考查三视图,具备空间想象能力是解题的关键,注意看不见的线要用虚线画出.5. 如表是有关企业和世界卫生组织统计的5种新冠疫苗的有效率,则这5种疫苗有效率的中位数是( )疫苗名称克尔来福阿斯利康莫德纳辉瑞卫星V有效率79%76%95%95%92%A. 79%B. 92%C. 95%D. 76%【答案】B【解析】【分析】根据中位数的定义,对5种新冠疫苗的有效率从小到大(或从大到小)进行排序,取中间(第三个)的有效率即可.【详解】解:根据中位数的定义,将5种新冠疫苗的有效率从小到大进行排序,如下:76%,79%,92%,95%,95%数据个数为5,奇数个,处于中间的数为第三个数,为92%故答案为B.【点睛】此题考查了中位数的定义,求中位数之前不要忘记对原数据进行排序是解决本题的关键.6. 反比例函数的图象分别位于第二、四象限,则直线不经过的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】先根据反比例函数y=的图象在第二、四象限内判断出k的符号,再由一次函数的性质即可得出结论.【详解】解:∵反比例函数y=的图象在第二、四象限内,∴k<0,∴一次函数y=kx+k的图象经过二、三、四象限,不经过第一象限.故选:A.【点睛】本题考查的是反比例函数的性质和一次函数的性质,注意:反比例函数y=中,当k<0,双曲线的两支分别位于第二、第四象限.7. 如图为本溪、辽阳6月1日至5日最低气温的折线统计图,由此可知本溪,辽阳两地这5天最低气温波动情况是()A. 本溪波动大B. 辽阳波动大C. 本溪、辽阳波动一样D. 无法比较【答案】C【解析】【分析】分别计算两组数据的方差,比较,即可判断.【详解】解:辽阳的平均数为:,方差为:,本溪的平均数为:,方差为:,∴,∴本溪、辽阳波动一样,故选:C.【点睛】本题考查了方差,正确理解方差的意义是解题的关键.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.8. 一副三角板如图所示摆放,若,则的度数是( )A. 80°B. 95°C. 100°D. 110°【答案】B【解析】【分析】由三角形的外角性质得到∠3=∠4=35°,再根据三角形的外角性质求解即可.【详解】解:如图,∠A=90°-30°=60°,∵∠3=∠1-45°=80°-45°=35°,∴∠3=∠4=35°,∴∠2=∠A+∠4=60°+35°=95°,故选:B.【点睛】本题考查了三角形的外角性质,正确的识别图形是解题的关键.9. 如图,在中,,由图中的尺规作图痕迹得到的射线与交于点E,点F为的中点,连接,若,则的周长为( )A. B. C. D. 4【答案】C【解析】【分析】根据作图可
上传时间:2023-05-08 页数:35
324人已阅读
(5星级)
2021年内蒙古赤峰市中考数学试卷一、选择题(每小题出的选项中只有一个符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑,每小题3分,共2分)1. -2021的相反数是()A. 2021B. -2021C. D. 【答案】A【解析】【分析】根据相反数的定义判断即可.【详解】解:-2021的相反数是2021,故选:A.【点睛】本题考查了相反数的概念,解题关键是明确相反数的定义,准确求解.2. 截至北京时间2021年1月3日6时,我国执行首次火星探测任务的天问一号火星探测器已经在轨飞行约163天,飞行里程突破4亿公里,距离地球接近1.3亿公里,距离火星约830万公里,数据8300000用科学记数法表示为()A. 8.3×105B. 8.3×106C. 83×105D. 0.83×107【答案】B【解析】【分析】直接利用科学记数法的定义及表示形式,其中,为整数求解即可.【详解】解:根据科学记数法的定义及表示形式,其中,为整数,则数据8300000用科学记数法表示为:,故选:B.【点睛】本题考查了科学记数法的表示方式,解题的关键是:掌握其定义和表达形式,根据题意确定的值.3. 下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是()A. B. C. D. 【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念逐项判断即可.【详解】A.不是轴对称图形,也不是中心对称图形,故此选项不符合题意;B.是轴对称图形,不是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项符合题意;D.不是轴对称图形,也不是中心对称图形,故此选项不符合题意,故选:C.【点睛】本题考查轴对称图形、中心对称图形,理解轴对称图形和中心对称图形是解答的关键.4. 下列说法正确的是()A. 清明时节雨纷纷是必然事件B. 为了了解一批灯管的使用寿命,可以采用普查的方式进行C. 一组数据2,5,4,5,6,7的众数、中位数和平均数都是5D. 甲、乙两组队员身高数据的方差分别为,,那么乙组队员的身高比较整齐【答案】D【解析】【分析】根据事件发生的可能性的大小判断即可.【详解】解:A、清明时节雨纷纷是随机事件,故不符合题意;B、为了了解一批灯管的使用寿命,不宜采用普查的方式进行,应采用抽查的方式进行,故不符合题意;C、一组数据2,5,4,5,6,7的众数、中位数都是,平均数为,故选项错误,不符合题意;D、甲、乙两组队员身高数据的方差分别为,,,乙组队员的身高比较整齐,故选项正确,符合题意;故选:D.【点睛】本题考查了必然事件、随机事件、不可能事件、解题的关键是:理解几种事件的定义.5. 下列计算正确的是()A. B. C. D. 【答案】D【解析】【分析】根据去括号法则可判断A,根据合并同类项法则可判断B,根据乘法公式可判断C,利用单项式乘法法则与积的乘方法则可判断D.【详解】解:A. ,故选项A去括号不正确,不符合题意;B. ,故选项B合并同类项正确,符合题意;C. ,故选项C公式展开不正确,不符合题意;D. ,故选项D单项式乘法计算不正确,不符合题意.故选择B.【点睛】本题考查去括号法则,同类项合并法则,乘法公式,积的乘方与单项式乘法,掌握去括号法则,同类项合并法则,乘法公式,积的乘方与单项式乘法是解题关键.6. 如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A. 85°B. 75°C. 60°D. 30°【答案】B【解析】【详解】分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.详解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选B.点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.7. 实数a、b、c在数轴上对应点的位置如图所示.如果,那么下列结论正确的是()A. B. C. D. 【答案】C【解析】【分析】根据a+b=0,确定原点的位置,根据实数与数轴即可解答.【详解】解:∵a+b=0,∴原点在a,b的中间,如图,由图可得:|a|<|c|,a+c>0,abc<0,,故选:C.【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.8. 五一期间,某地相关部门对观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整),下列结论错误的是()A. 本
上传时间:2023-05-08 页数:34
324人已阅读
(5星级)
中考总复习:统计与概率--巩固练习【巩固练习】一、选择题1.下列说法不正确的是( ).A.某种彩票中奖的概率是,买1000张该种彩票一定会中奖B.了解一批电视机的使用寿命适合用抽样调查C.若甲组数据的标准差S甲=0.31,乙组数据的标准差S乙=0.25,则乙组数据比甲组数据稳定D.在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件2. (2016·南京二模)某课外兴趣小组为了解所在地区的老年人的健康状况,分别作了四种不同的抽样调查,你认为抽样较合理的是().A.在公园调查了1000名老年人的健康状况 B.在医院调查了1000名老年人的健康状况C.调查了100名小区内老年邻居的健康状况 D.利用派出所的户籍网随机调查了该地区10%的老年人的健康状况3.如图,转动转盘,转盘停止转动时指针指向阴影部分的概率是().A. B. C. D.4.(2016•安徽模拟)有五张卡片的正面分别写有我的中国梦,五张卡片洗匀后将其反反面放在桌面上,小明从中任意抽取两张卡片,恰好是中国的概率是()A.B.C.D.5.若自然数n使得三个数的加法运算n+(n+1)+(n+2)产生进位现象,则称n为连加进位数.例如:2不是连加进位数,因为2+3+4=9不产生进位现象;4是连加进位数,因为4+5+6=15产生进位现象;51是连加进位数,因为51+52+53=156产生进位现象.如果从0,1,2,…,99这100个自然数中任取一个数,那么取到连加进位数的概率是().A.0.88 B.0.89 C.0.90 D.0.91 6. 样本x1、x2、x3、x4的平均数是,方差是s2,则样本x1+3,x2+3,x3+3,x4+3的平均数和方差分别是().A.+3,S2+3 B.+3, S2 C.,S2+3 D.,S2二、填空题7. 在一个不透明的盒子里装有5个分别写有数字-2,-1,0,1,2的小球,它们除数字不同外其余全部相同. 现从盒子里随机取出一个小球,将该小球上的数字作为点P的横坐标,将该数的平方作为点P的纵坐标,则点P落在抛物线y=-x2+2x+5与x轴所围成的区域内(不含边界)的概率是____1__.8. 一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有_________个黄球. 9.(2017•青浦区一模)从点数为1、2、3的三张扑克牌中随机摸出两张牌,摸到的两张牌的点数之积为素数的概率是___________.10.(2016•郑州一模)有大小、形状、颜色完全相同的3个乒乓球,每个球上分别标有数字1,2,3中的一个,将这3个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是 .11. 现有、两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷立方体朝上的数字为、小明掷立方体朝上的数字为来确定点,那么它们各掷一次所确定的点落在已知抛物线上的概率为_______. 12.将一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为,第二次掷出的点数为,则使关于的方程组只有正数解的概率为____.三、解答题13.(2016•凉山州模拟)有两个不透明的袋子中分别装有3个大小、形状完全一样的小球,第一个袋子中的三个小球上分别标有数字﹣3,﹣2,﹣1,第二个袋子上的三个小球上分别标有数字1,﹣1,﹣2,从两个袋子中各摸出一个小球,第一个袋子中摸出的小球记为m,第二个袋子中摸出的小球记为n,若m、n分别是点A的横坐标.(1)用列表法或树状图法表示所有可能的点A的坐标;(2)求点A(m,n)在抛物线y=x2+3x上的概率.14. 小华与小丽设计了A、B两种游戏:游戏 A的规则:用3张数字分别是2,3,4的扑克牌,将牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字.若抽出的两张牌上的数字之和为偶数,则小华获胜;若两数字之和为奇数,则小丽获胜.游戏 B的规则:用4张数字分别是5,6,8,8的扑克牌,将牌洗匀后背面朝上放置在桌面上,小华先随机抽出一张牌,抽出的牌不放回,小丽从剩下的牌中再随机抽出一张牌.若小华抽出的牌面上的数字比小丽抽出的牌面上的数字大
上传时间:2023-04-30 页数:8
324人已阅读
(5星级)
中考总复习:一元一次不等式(组)—巩固练习【巩固练习】一、选择题1. 不等式-x-5≤0的解集在数轴上表示正确的是() A BCD2.若实数a>1,则实数M=a,N=23a,P=213a的大小关系为( )A.P>N>M B.M>N>PC.N>P>M D.M>P>N3.如图所示,一次函数y=kx+b的图象经过A,B两点,则不等式kx+b>0的解集是( )A.x>0 B.x>2 C.x>-3D.-3<x<2 4.如果不等式213x+1>13ax的解集是x<53,则a的取值范围是( )A.a>5 B.a=5C.a>-5 D.a=-5 5.(2015•杭州模拟)已知整数x满足是不等式组,则x的算术平方根为()A.2B.±2C.D.46.不等式组3(2)423xaxxx无解,则a的取值范围是( )A.a<1 B.a≤1 C.a>1 D.a≥1二、填空题7.若不等式ax<a的解集是x>1,则a的取值范围是______.8.(2014春•北京校级月考)若(m﹣1)x|2m﹣1|﹣8>5是关于x的一元一次不等式,则m=.9.已知3x+4≤6+2(x-2),则│x+1│的最小值等于__ ____.10.若不等式a(x-1)>x-2a+1的解集为x<-1,则a的取值范围是____ __.11.满足22x≥213x的x的值中,绝对值不大于10的所有整数之和等于______.112.有10名菜农,每个可种甲种蔬菜3亩或乙种蔬菜2亩,已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元,若要总收入不低于15.6万元,则最多只能安排_______人种甲种蔬菜.三、解答题13.解下列不等式(组),并把解集在数轴上表示出来.(1)x-3≥354x.(2)解不等式组 14. 若,求的取值范围.15.(2015•东莞)某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1)求商场销售A、B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A、B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?16. 如图所示,一筐橘子分给若干个儿童,如果每人分4个,则剩下9个;如果每人分6个,则最后一个儿童分得的橘子数少于3个,问共有几个儿童,分了多少个橘子?【答案与解析】一、选择题1.【答案】B;【解析】解不等式得x ≥-5,故选B.2.【答案】D;2【解析】方法一:取a=2,则M=2,N=43,P=53,由此知M>P>N,应选D.方法二:由a>1知a-1>0.又M-P=a-213a=13a>0,∴M>P;P-N=213a-23a=13a>0,∴P>N.∴M>P>N,应选D.3.【答案】C;【解析】不等式kx+b>0的解集 即y>0的解集,观察图象得x>-3. 4.【答案】B;【解析】化简原不等式得(2-a)x>-5,因为原不等式解集是x<53,所以2-a<0,且, 解得a>2,且a=5.5.【答案】A;【解析】解:,解①得:x>3,解②得:x<5,则不等式组的解集是:3<x<5.则x=4.x的算术平方根是:2.故选A.6.【答案】B;【解析】 解不等式组得x≥1,x<a, 因为不等式组无解,所以a≤1.二、填空题7.【答案】a<0;【解析】结果不等号的方向改变了,故a<0.8.【答案】0;【解析】由(m1﹣)x|2m1|﹣8﹣>5是关于x的一元一次不等式,得,解得m=0,故答案为:0.9.【答案】1;【解析】解不等式得x≤-2,当x=-2时,│x+1│有最小值,有最小值等于1.10.【答案】a<1;【解析】解不等式得(a-1)x>1-a, 因为不等式a(x-1)>x-2a+1的解集为x<-1,所以a-1<0,即a<1.311.【答案】-19; 【解析】解不等式得x≤8,绝对值不大于10的所有整数之和为(-9)+(-10)=-19.12.【答案】4.三、解答题13.【答案与解析】 (
上传时间:2023-04-30 页数:5
324人已阅读
(5星级)
中考冲刺:动手操作与运动变换型问题—巩固练习(基础)【巩固练习】一、选择题1. 如图,在Rt△ABC 中,∠C=90° ,AC=BC=6cm,点P从点A出发,沿AB方向以每秒2cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPCP为菱形,则t的值为( ). A. 2B. 2 C. 22 D.32.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A→B→A的方向运动,设运动时间为t(s)(0≤t<3),连接EF,当△BEF是直角三角形时,t的值为( ).A. 47 B. 1 C. 47或1 D. 47或1或49 3. (2015•盘锦)如图,边长为1的正方形ABCD,点M从点A出发以每秒1个单位长度的速度向点B运动,点N从点A出发以每秒3个单位长度的速度沿A→D→C→B的路径向点B运动,当一个点到达点B时,另一个点也随之停止运动,设△AMN的面积为s,运动时间为t秒,则能大致反映s与t的函数关系的图象是().A.B.C.D.二、填空题4.如图,已知点A(0,2)、B(23,2)、C(0,4),过点C向右作平行于x轴的射线,点P是射线上的动点,连结AP,以AP为边在其左侧作等边△APQ ,连结PB、BA.若四边形ABPQ为梯形,则(1)当AB为梯形的底1时,点P的横坐标是 ;(2)当AB为梯形的腰时,点P的横坐标是 . 5.如图,矩形纸片ABCD,AB=2,点E在BC上,且AE=EC.若将纸片沿AE折叠,点B恰好落在AC上,则AC的长是 . 6. (2016•东河区二模)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的是 .三、解答题7.如图所示是规格为8×8的正方形网格,请在所给网格中,按下列要求操作:(1)请在网格中建立平面直角坐标系,使A点坐标为(-2,4),B点坐标为(-4,2);(2)在第二象限内的格点上画一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,则C点的坐标是________,△ABC的周长是________ (结果保留根号);2(3)画出△ABC以点C为旋转中心、旋转180°后的△A′B′C,连接AB′和A′B,试说出四边形ABAB是何特殊四边形,并说明理由.8. (1)观察与发现小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展平纸片(如图①);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).小明认为△AEF是等腰三角形,你同意吗?请说明理由.(2)实践与运用将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点D′处,折痕为EG(如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.9. 如图(1),已知△ABC中,AB=BC=1,∠ABC=90°,把一块含30°角的直角三角板DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DE,长直角边为DF),将直角三角形板DEF绕D点按逆时针方向旋转.(1)在图(1)中,DE交AB于M,DF交BC于N.①证明:DM=ND;②在这一旋转过程中,直角三角板DEF与△ABC的重叠部分为四边形DMBN,请说明四边形DMBN的面积是否发生变化?若发生变化,请说明是如何变化的;若不发生变化,求出其面积;(2)继续旋转至如图(2)所示的位置,延长AB交DE于M,延长BC交DF于N,DM=DN是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)继续旋转至如图(3)所示的位置,延长FD交BC于N,延长ED交AB于M,DM=DN是否仍然成立?若成立,请写出结论,不用证明.310. (2016•绵阳)如图,以菱形ABCD对角线交点为坐标原点,建立平面直角坐标系,A、B两点的坐标分别为(﹣2,0)、(0,﹣),直线DE⊥DC交AC于E,动点P从点A出发,以每秒2个单位的速度沿着A→D→C的路线向终点C匀速运动,设△PDE的面积为S(S≠0),点P的运动时间为t秒.(1)求直线DE的解析式;(2)求S与t之间的函数关
上传时间:2023-04-30 页数:12
324人已阅读
(5星级)
中考冲刺:观察、归纳型问题—巩固练习(基础)【巩固练习】一、选择题1. 用边长为1的正方形覆盖3×3的正方形网格,最多覆盖边长为1的正方形网格(覆盖一部分就算覆盖)的个数是() A.2 B.4 C.5 D.62.求1+2+22+23+…+22 012的值,可令S=1+2+22+23+…+22 012,则2S=2+22+23+24+…+22013,因此,2S-S=22 013-1.仿照以上推理,计算出1+5+52+53+…+52 012的值为()A.52 012-1 B.52 013-1 C.D. 3.(2016•冷水江市三模)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2017秒时,点P的坐标是()A.(2016,0)B.(2017,1)C.(2017,﹣1)D.(2018,0)二、填空题4.(2015•盘锦四模)已知,如图,△OBC中是直角三角形,OB与x轴正半轴重合,∠OBC=90°,且OB=1,BC=,将△OBC绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB1=OC,得到△OB1C1,将△OB1C1绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB2=OC1,得到△OB2C2,…,如此继续下去,得到△OB2015C2015,则点C2015的坐标是.15.(2016•天门)如图,在平面直角坐标系中,△A1A2A3,△A3A4A5,△A5A6A7,△A7A8A9,…,都是等边三角形,且点A1,A3,A5,A7,A9的坐标分别为A1(3,0),A3(1,0),A5(4,0),A7(0,0),A9(5,0),依据图形所反映的规律,则A100的坐标为 .6. 如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…Mn分别为边B1B2,B2B3,B3B4,…,BnBn+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△BnCnMn的面积为Sn,则Sn=___________.(用含n的式子表示)三、解答题7.观察下列等式:……请解答下列问题:(1)按以上规律列出第5个等式:a5=______=______;(2)用含有n的代数式表示第n个等式:an=______=______(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.28. 如下表所示,是按一定规律排列的方程组和它的解的对应关系,若方程组自左至右依次记作方程组1、方程组2、方程组3、…、方程组n.(1)将方程组1的解填入表中.(2)请依据方程组和它的解的变化规律,将方程组n和它的解直接填入表中;9. 如图所示,是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.将图①倒置后与原图拼成图②的形状,这样我们可以算出图①中所有圆圈的个数为123…(1)2nnn.如果图①中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图③的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边的这个圆圈中的数是________;(2)我们自上往下,在每个圆圈中都按图④的方式填上一串连续的整数-23,-22,-21,…,求图④中所有圆圈中各数的绝对值之和.10.(余杭区期中)如图,将一张正方形纸片剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去.(1)填表次数12345个数47(2)如果剪了n次,共剪出多少个小正方形?(3)能否经过若干次分割后共得到2014片纸片?若能,请直接写出相应的次数,若不能,请说明理由.3(4)若将所给的正方形纸片剪成若干个小正方形(其大小可以不一样),那么你认为可以将它剪成六个小正方形吗?八个小正方形呢?如果可以,请在下图中画出剪割线的示意图;如果不可以,请简单说明理由.【答案与解析】一、选择题1.【答案】D;【解析】6个,把边长为1的小正方形的对角线与3乘3网格中的中间正方形任意边重合(其中小正方形的对角线中点与3乘3网格中的中间正方形边上的中点重合),因为对角线的长为2>1,所以这时有6个正方形网格被覆盖. 2.【答案】C;【解析】设S=1+5+52+53+…+52 012,则5S=5+52+53+54+…+52 013.因此,5S-S=52 013-1,S=.3.【答案】B;【解析】以时间为点P的下标.观察,发现规律:
上传时间:2023-04-30 页数:6
324人已阅读
(5星级)
中考冲刺:几何综合问题—知识讲解(提高)【中考展望】 几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力.这类题型在近几年全国各地中考试卷中占有相当的分量,不仅有选择题、填空题、几何推理计算题以及代数与几何的综合计算题,还有更注重考查学生分析问题和解决问题能力的探究性的问题、方案设计的问题等等.主要特点是图形较复杂,覆盖面广、涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.几何综合题的呈现形式多样,如折叠类型、探究型、开放型、运动型、情景型等,背景鲜活,具有实用性和创造性,考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能力.以几何为主的综合题常常在一定的图形背景下研究以下几个方面的问题:1、证明线段、角的数量关系(包括相等、和、差、倍、分及比例关系等);2、证明图形的位置关系(如点与线、线与线、线与圆、圆与圆的位置关系等);3、几何计算问题;4、动态几何问题等.【方法点拨】一、几何计算型综合问题,常常涉及到以下各部分的知识:1、与三角形有关的知识;2、等腰三角形,等腰梯形的性质;3、直角三角形的性质与三角函数;4、平行四边形的性质;5、全等三角形,相似三角形的性质;6、垂径定理,切线的性质,与正多边形有关的计算;7、弧长公式与扇形面积公式.二、几何论证型综合题的解答过程,要注意以下几个方面:1、注意图形的直观提示,注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形;2、注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础,要由已知联想经验,由未知联想需要,不断转化条件和结论来探求思路,找到解决问题的突破点;3、要运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题,还要灵活运用数学思想方法如数形结合、分类讨论、转化、方程等思想来解决问题.【典型例题】类型一、动态几何型问题1.(2016•太原校级自主招生)如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系和位置关系;(不要求证明)(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出判断判断予以证明;(3)如图3,若点E、F分别是BC、AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.【思路点拨】(1)结论:FG=CE,FG∥CE.如图1中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可.1(2)结论仍然成立.如图2中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可.(3)结论仍然成立.如图3中,设DE与FC的延长线交于点M,证明方法类似.【答案与解析】解:(1)结论:FG=CE,FG∥CE.理由:如图1中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.(2)结论仍然成立.理由:如图2中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.2∴GF=EC,∴GF=EC,GF∥EC.(3)结论仍然成立.理由:如图3中,设DE与FC的延长线交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,∴∠CBF=∠DCE=90°在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.【总结升华】本题考查四边形综合题、正方形的性质、平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是
上传时间:2023-04-30 页数:16
324人已阅读
(5星级)
中考冲刺:数形结合问题—巩固练习(基础)【巩固练习】一、选择题1.(2016•枣庄)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A.1个B.2个 C.3个D.4个2.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )A 、222b)-a(=b-a B、222b+ab2+a=)b+a(C、222b+ab2-a=)b-a( D、22-b()(-b)aaba二、 填空题3. 实数a、b、c在数轴上的对应点的位置如图所示,下列式子中正确的序号为____________.①b+c>0 ②a+b>a+c ③ac<bc ④ab>ac4.(2016•通辽)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出以下结论:①abc<0 ②b2﹣4ac>0 ③4b+c<0 1④若B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1>y2⑤当﹣3≤x≤1时,y≥0,其中正确的结论是(填写代表正确结论的序号) .三、解答题5.某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么2个小时时血液中含药最高,达每毫升6微克(1微克=10-3毫克),接着逐步衰减,10小时时血液中含药量为每毫升3微克,每毫升血液中含药量y(微克)随时间x(小时)的变化如图所示.当成人按规定剂量服药后.(1)分别求出x≤2和x≥2时y与x的函数解析式;(2)如果每毫升血液中含量为4微克或4微克以上时,在治疗疾病时是有效的,那么这个有效时间有多长?yxO236106.图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形. (1)你认为图2中的阴影部分的正方形的边长等于 _____;(2)请用两种不同的方法求图2中阴影部分的面积.① ______②_______; (3)观察图2你能写出下列三个代数式之间的等量关系吗?(4)运用你所得到的公式,计算若mn=-2,m-n=4,求(m+n)2的值.(5)用完全平方公式和非负数的性质求代数式x2+2x+y2-4y+7的最小值.27.为发展电信事业,方便用户,电信公司对移动电话采取不同的收费方式,其中,所使用的便民卡与如意卡在某市范围内每月(30天)的通话时间x(min)与通话费y(元)的关系如图所示:(1)分别求出通话费y1,y2与通话时间x之间的函数关系式;(2)请帮用户计算,在一个月内使用哪一种卡便宜.8.(长宁区二模)如图,一次函数y=ax1﹣(a≠0)的图象与反比例函数y=( k≠0)的图象相交于A、B两点且点A的坐标为( 2,1),点B的坐标(﹣1,n).(1)分别求两个函数的解析式; (2)求△AOB的面积.9.请同学们仔细阅读如图所示的计算机程序框架图,回答下列问题:(1)如果输入值为2,那么输出值是多少?(2)若要使输入的x的值只经过一次运行就能输出结果,求x的取值范围;(3)若要使开始输入的x的值经过两次运行才能输出结果,那么x的取值范围又是多少?310.观察如图所包含规律(图中三角形均是直角三角形,且一条直角边始终为1,四边形均为正方形.S1,S2,S3,…Sn依次表示正方形的面积,每个正方形边长与它左边相邻的直角三角形斜边相等),再回答下列问题.(1)填表:直角边A1B1A2B2A3B3A4B4…AnBn长度1…(2)当s1+s2+s3+s4+…+sn=465时,求n.11.某报社为了了解读者对该报社一种报纸四个版面的认可情况,对读者做了一次问卷凋查,要求读者选出自己最喜欢的一个版面,并将调查结果绘制成如下的统计图,请你根据图中提供的信息解答下列问题.(1)在这次活动中一共调查了多少读者?(2)在扇形统计图中,计算第一版所在扇形的圆心角度数;(3)请你求出喜欢第四版的人数,并将条形统计图补充完整.4 【答案与解析】一、选择题1.【答案】C;【解析】∵二次函数y=ax2+bx+c图象经过原点,∴c=0,∴abc=0∴①正确;∵x=1时,y<0,∴a+b+c<0,∴②不正确;∵抛物线开口向下,∴a<0,∵抛物线的对称轴是x=﹣,∴﹣,b<0,∴b=3a,又∵a<0,b<0,∴a>b,∴③正确;∵二次函数y=ax2+bx+c图象与x轴有两个交点,∴△>0,∴b2﹣4ac>0,
上传时间:2023-04-30 页数:9
324人已阅读
(5星级)
中考冲刺:图表信息型问题(提高)一、选择题1. (兰州模拟)如图,平行四边形ABCD的边长AD为8,面积为32,四个全等的小平行四边形对称中心分别在平行四边形ABCD的顶点上,它们的各边与平行四边形ABCD的各边分别平行,且与平行四边形ABCD相似.若平行四边形的一边长为x,且0<x≤8,阴影部分的面积和为y,则y与x之间的函数关系的大致图象是().A. B. C. D.2.物理知识告诉我们,一个物体所受到的压强P与所受压力F及受力面积S之间的计算公式为.当一个物体所受压力为定值时,那么该物所受压强P与受力面积S之间的关系用图象表示大致为 ( )3.某蓄水池的横断面示意图如图1所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出.下面的图象能大致表示水的深度h和放水时间t之间的关系的是 ( )二、填空题4.(2016秋•太仓市校级期末)将一个三角形纸板按如图所示的方式放置一个破损的量角器上,使点C落在半圆上,若点A、B处的读数分别为65°、20°,则∠ACB的大小为______°.1 第4题 5.如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是______. 第5题6. (平谷区期末)如图1反映的过程是:矩形ABCD中,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,S△ABP=y.则矩形ABCD的周长是 . 三、解答题7. 小亮家最近购买了一套住房.准备在装修时用木质地板铺设居室,用瓷砖铺设客厅.经市场调查得知:用这两种材料铺设地面的工钱不一样.小亮根据地面的面积,对铺设居室和客厅的费用(购买材料费和工钱)分别做了预算,通过列表,并用x(m2)表示铺设地面的面积,用y(元)表示铺设费用,制成如图. 2请你根据图中所提供的信息,解答下列问题:(1)预算中铺设居室的费用为______元/ m2,铺设客厅的费用为______元/ m2.(2)表示铺设居室的费用y(元)与面积 x(m2)之间的函数关系式为______,表示铺设客厅的费用y(元)与面积x(m2)之间的函数关系式为______.(3)已知在小亮的预算中,铺设1 m2 的瓷砖比铺设1m2 的木质地板的工钱多5元;购买1m2 的瓷砖是购买1m2木质地板费用的.那么,铺设每平方米木质地板、瓷砖的工钱各是多少元?购买每平方米的木质地板、瓷砖的费用各是多少元?8. (2016春•黄岛区期末)如图所示,A,B两地相距50千米,甲于某日下午1时骑自行车从A地出发驶往B地,乙也于同日下午骑摩托车按同路从A地出发驶往B地,如图所示,图中的折线OPQ和线段MN分别表示甲、乙所行驶的路程S与该日下午时间t之间的关系.根据图象回答下列问题:(1)甲和乙出发的时间相差______小时?(2)______(填写甲或乙)更早到达B城?(3)乙出发大约______小时就追上甲?(4)描述一下甲的运动情况;(5)请你根据图象上的数据,求出甲骑自行车在全程的平均速度.9. 行驶中的汽车,在刹车后由于惯性的作用,还要继续向前滑行一段距离才停止,这段距离称为刹车距离.为了测定某种型号汽车的刹车性能(车速不超过140km/h),对这种汽车进行测试,测得数据如下表:刹车时车速(km/h)0102030405060刹车距离(m)00.31.02.13.65.57.8(1)以车速为x轴,以车距离为y轴,在坐标系中描出这些数据所表示的点,并用平滑的曲线连结这些点,得到函数的大致图象;(2)观察图象,估计函数的类型,并确定一个满足这些数据的函数解析式;(3)该型号汽车在国道上发生了一次交通事故,现场测得刹车距离为46.5m,请推测刹车时的速度是多少?请问在事故发生时,汽车是超速行驶还是正常行驶?10. 某果品公司急需将一批不易存放的水果从A市运到B市销售.现有三家运输公司可供选择,这三家运输公司提供的信息如下:运输单位运输速度(千米/小时)运输费用(元/千米)包装与装卸时间(小时)包装与装卸费用(元)甲公司606415003乙公司50821000丙公司1
上传时间:2023-04-30 页数:7
324人已阅读
(5星级)
【巩固练习】一、选择题1.关于平角、周角的说法正确的是().A.平角是一条直线. B.周角是一条射线C.反向延长射线OA,就成一个平角. D.两个锐角的和不一定小于平角2.在时刻2∶15时,时钟上的时针与分针间的夹角是( )A.22.5° B.85° C.75 ° D.60°3.如图所示,将一幅三角板叠在一起,使直角的顶点重合于点O,则∠AOB+∠DOC的值()A.小于180°B.等于180°C.大于180°D.不能确定4.(2016•朝阳区校级模拟)下面等式成立的是()A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44°D.41.25°=41°15′5.(2015•东莞模拟)一个角的余角比这个角的补角的一半小40°,则这个角为( )度.A.80°B.70° C.85° D.75°6. 如图,OB、OC是∠AOD的任意两条射线,OM平分∠AOB,ON平分∠COD,若∠MON=α,∠BOC=β,则表示∠AOD的式子是()A.2α-β B.α-βC.α+βD.以上都不正确7.书店、学校、食堂在同一个平面上,分别用点A、B、C来表示,书店在学校的北偏西30°,食堂在学校的南偏东15°,则平面图上的∠ABC应该是().A.65°B.35°C.165°D.135°8.如图将长方形纸片ABCD的角C沿着GF折叠(点F在BC上,不与B、C重合),使得点C落在长方形内部点E处,若FH平分∠BFE,则关于∠GFH的度数α说法正确的是( )A.90°﹤α﹤180° B. 0°﹤α﹤90°C. α= 90° 1ABCDGEFH D.α随折痕GF位置的变化而变化二、填空题9.把一个平角16等分,则每份(用度、分、秒表示)为_______.10.如图所示,∠AOC与∠BOD都是直角,且∠AOB:∠AOD=2:11,则∠AOB=_______.11.(2015春•高密市期末)从A沿北偏东60°的方向行驶到B,再从B沿南偏西20°的方向行驶到C,则∠ABC=度.12. 如图,已知直线AB和CD相交于点O,∠COE是直角,OF平分∠AOE.(1)写出∠AOC与∠BOD的大小关系:,判断的依据是.(2)若∠COF=35°,∠BOD=.13.如图,在一个正方体的两个面上画了两条对角线AB,AC,那么这两条对角线的夹角等于 . 14.如图,在AOE的内部从O引出3条射线,那么图中共有__________个角;如果引出5条射线,有__个角;如果引出n条射线,有 __________个角.三、解答题15.(2016春•曹县校级月考)计算:(1)18°13′×5.(2)27°26′+53°48′.(3)90°﹣79°18′6″.216.如图所示,已知∠AOC=2∠BOC,∠AOC的余角比∠BOC小30°.(1)求∠AOB的度数.(2)过点O作射线OD,使得∠AOC=4∠AOD,请你求出∠COD的度数17. 如图,已知∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.(1)求∠EOF的度数;(2)若∠AOC=x°,∠EOF=y°.则请用x的代数式来表示y;(3)如果∠AOC+∠EOF=156°,则∠EOF是多少度?18.(2014秋•罗平县校级期末)钟面上的角的问题.(1)3点45分,时针与分针的夹角是多少?(2)在9点与10点之间,什么时候时针与分针成100°的角?【答案与解析】一、选择题1.【答案】C 【解析】角与直线、射线、线段是不同的几何图形,不能混淆。2.【答案】A 【解析】().16151530222523.【答案】B 【解析】∠AOB+∠DOC=(∠AOC+∠BOC)+( 90°-∠BOC) =90°+90°=180°4.【答案】D【解析】解:A、83.5°=83°50′,错误;B、37°12′=37.48°,错误;C、24°24′24″=24.44°,错误;3OBCEAFD、41.25°=41°15′,正确.故选D.5.【答案】A【解析】设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),由题意得,(180°﹣x)﹣(90°﹣x)=40°,解得x=80°.6. 【答案】A7. 【
上传时间:2023-04-30 页数:6
324人已阅读
(5星级)
【巩固练习】一、选择题1.如图所示,在数轴上点A表示的数可能是()A.1.5 B.-1.5 C.-2.6 D.2.6 2.从原点开始向右移动3个单位,再向左移动1个单位后到达A点,则A点表示的数是().A.3B.4C.2D.-23.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这条数轴上任意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数是()A.2002或2003B.2003或2004C.2004或2005D.2005或20064.北京、纽约等5个城市的国际标准时间(单位:小时)可在数轴上表示如图若将两地国际标准时间的差简称为时差,则( )A.首尔与纽约的时差为13小时B.首尔与多伦多的时差为13小时C.北京与纽约的时差为14小时D.北京与多伦多的时差为14小时5.一个数的相反数是非负数,则这个数一定是()A.正数 B.负数 C.非正数 D.非负数6.在①+(+1)与-(-1);②-(+1)与+(-1);③+(+1)与-(+1);④+(-1)与-(-1)中,互为相反数的是( )A. ①② B. ②③C. ③④D. ②④7.-(-2)=()A.-2B. 2C.±2 D.4二、填空题1.(2016春•新泰市校级月考)不大于4的正整数的个数为.2.(2015春•岳池县期中)已知数轴上有A,B两点,A,B之间的距离为1,点A与原点O的距离为3,那么点B对应的数是 .3. 若a为有理数,在-a与a之间(不含-a与a)有21个整数,则a的取值范围是 .4.如图所示,矩形ABCD的顶点A,B在数轴上,CD=6,点A对应的数为-1,则点B所对应的数为 . 5.数轴上离原点的距离小于3.5的整数点的个数为m, 距离原点等于3.5的点的个数为n,则3____mn.16.已知x与y互为相反数,y与z互为相反数,又2z,则zxy= .7. 已知-1<a<0<1<b,请按从小到大的顺序排列-1,-a,0,1,-b为 .8. 若a为正有理数,在-a与a之间(不含-a与a)有1997个整数,则a的取值范围是 .若a为有理数,在-a与a之间(不含-a与a)有1997个整数,则a的取值范围是___________.三、解答题1.小敏的家、学校、邮局、图书馆坐落在一条东西走向的大街上,依次记为A、B、C、D,学校位于小敏家西150米,邮局位于小敏家东100米,图书馆位于小敏家西400米.(1)用数轴表示A、B、C、D的位置(建议以小敏家为原点).(2)一天小敏从家里先去邮局寄信后.以每分钟50米的速度往图书馆方向走了约8分钟.试问这时小敏约在什么位置?距图书馆和学校各约多少米?2.(2016春•北京校级模拟)化简:﹣{+[﹣(﹣|﹣6.5|)]}.3.化简下列各数,再用<连接.(1)-(-54)(2)-(+3.6)(3)53 (4)2454.若a与b互为相反数,c与d互为倒数,m是最大的负整数.求代数式的值.【答案与解析】一、选择题1.【答案】C【解析】∵点A位于﹣3和﹣2之间,∴点A表示的实数大于﹣3,小于﹣2.2.【答案】C3.【答案】C【解析】若线段AB的端点与整数重合,则线段AB盖住2005个整点;若线段AB的端点不与整点重合,则线段AB盖住2004个整点.可以先从最基础的问题入手.如AB=2为基础进行分析,找规律.所以答案:C4.【答案】B【解析】本题以北京等5个城市的国际标准时间为材料,编拟了一道与数轴有关的实际问题.从选项上分析可得:两个城市之间相距几个单位长度,两个点之间的距离即为时差.所以首尔与纽约的时差为14小时,首尔与多伦多的时差为13小时,北京与纽约的时差为13小时,北京与多伦多的时差为12小时.因此答案:B. 5.【答案】C【解析】 负数的相反数是正数,0的相反数是0,而非负数就是正数和0,所以负数和0的相反数是非负数,即非正数的相反数是非负数.6.【答案】C【解析】先化简在判断,①+(+1)=1,-(-1)=1,不是相反数的关系;②-(+1)=-1,+(-1)=-1,不是相反数的关系;③+(+1)=1,-(+1)=-1,是相反数的关系;④+(-1)=-1,-(-1)=1,是相反数的关系,所以③④中的两个数是相2反数的关系,所以答
上传时间:2023-04-30 页数:4
324人已阅读
(5星级)
【巩固练习】一、选择题1. (2014•甘肃模拟)下列语句正确的()个(1)带﹣号的数是负数;(2)如果a为正数,则﹣a一定是负数;(3)不存在既不是正数又不是负数的数;(4)0℃表示没有温度.A.0 B. 1 C.2 D.32.关于数0,以下各种说法中,错误的是 ( ) A.0是整数 B.0是偶数 C.0是正整数 D.0既不是正数也不是负数 3.如果规定前进、收入、盈利、公元后为正,那么下列各语句中错误的是 ( ) A.前进-18米的意义是后退18米 B.收入-4万元的意义是减少4万元 C.盈利的相反意义是亏损 D.公元-300年的意义是公元后300年 4.一辆汽车从甲站出发向东行驶50千米,然后再向西行驶20千米,此时汽车的位置是 () A.甲站的东边70千米处 B.甲站的西边20千米处 C.甲站的东边30千米处 D.甲站的西边30千米处5.在有理数中,下面说法正确的是()A.身高增长cm2.1和体重减轻kg2.1是一对具有相反意义的量 B.有最大的数C.没有最小的数,也没有最大的数D.以上答案都不对6.下列各数是正整数的是()A.-1B.2C.0.5D.二、填空题1.(2014秋•朝阳区期末)如果用+4米表示高出海平面4米,那么低于海平面5米可记作.2.在数中,非负数是______________;非正数是 __________.3.把公元2008年记作+2008,那么-2008年表示 .4.既不是正数,也不是负数的有理数是.5.(2016春•温州校级期中)如果向东行驶10米,记作+10米,那么向西行驶20米,记作 _________米.6.是整数而不是正数的有理数是 .7.既不是整数,也不是正数的有理数是 .18.一种零件的长度在图纸上是(03.002.010)毫米,表示这种零件的标准尺寸是 毫米,加工要求最大不超过毫米,最小不小于 毫米.三、解答题1.说出下列语句的实际意义.(1)输出-12t (2)运进-5t(3)浪费-14元 (4)上升-2m (5)向南走-7m2.(2014秋•晋江市期末)下面两个圈分别表示负数集和分数集,请把下列6个数填入这两个圈中合适的位置.﹣28%,,﹣2014,3.14,﹣(+5),﹣0.3.(2015秋•赣州校级期末)随着人们的生活水平的提高,家用轿车越来越多地进入普通家庭.小明家买了一辆小轿车,他连续记录了7天中每天行驶的路程,以50km为标准,多于50km的记为+,不足50km的记为﹣,刚好50km的记为0,记录数据如下表:时间第一天第二天第三天第四天第五天第六天第七天路程(km)﹣8﹣11﹣140﹣16+41+8(1)请你估计小明家的小轿车一月(按30天计)要行驶多少千米?(2)若每行驶100km需用汽油8L,汽油每升7.14元,试求小明家一年(按12个月计)的汽油费用是多少元? 4.观察下面依次排列的一列数,它的排列有什么规律?请接着写出后面的两个数,你能说出第2011个数是什么吗?(1)1,-2,3,-4,5,-6,7,-8, , , , (2)-1,21,-31,41,51,61,71, , , ,【答案与解析】一、选择题1.【答案】B 【解析】(1)带﹣号的数不一定是负数,如﹣(﹣2),错误;(2)如果a为正数,则﹣a一定是负数,正确;(3)0既不是正数也不是负数,故不存在既不是正数又不是负数的数此表述错误;(4)0℃表示没有温度,错误.综上,正确的有(2),共一个.22.【答案】C【解析】0既不是正数也不是负数,但0是整数,是偶数,是自然数.3. 【答案】D 【解析】D错误,公元-300年的意义应该是公元前300年.4. 【答案】 C【解析】画个图形有利于问题分析,向东50千米然后再向西20千米后显然此时汽车在甲站的东边30千米处.5.【答案】C【解析】A错误,因为身高与体重不是具有相反意义的量;B错误,没有最大的数也没有最小数;C对.6. 【答案】B 二、填空题1.【答案】﹣5米2.【答案】0.5,100,0,112 ;122,0,-45【解析】正数和零统称为非负数,负数和零统称为非正数,零既不是正数也不是负数.3.【答案】公元前2008年【解析】正负数表示具有相反意义的量.4.【答案】0【
上传时间:2023-04-30 页数:4
324人已阅读
(5星级)
2021年浙江省初中毕业生学业考试(台州卷) 数学亲爱的考生:欢迎参加考试!请你认真审题,仔细答题,发挥最佳水平,答题时,请注意以下几点:1.全卷共4页,满分150分,考试时间120分钟.2.答案必写在答题纸相应的位置上,写在试题卷、草稿纸上无效.3.答题前,请认真阅读答题纸上的注意事项,按规定答题.4.本次考试不得使用计算器.一、选择题(本题有10小题,每小题4分,共40分,请选出各题中一个符合题意的正确选项,不选多选、错选,均不给分)1. 用五个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是( )A. B. C. D. 2. 小光准备从A地去往B地,打开导航、显示两地距离为37.7km,但导航提供的三条可选路线长却分别为45km,50km,51km(如图).能解释这一现象的数学知识是( )A. 两点之间,线段最短B. 垂线段最短C. 三角形两边之和大于第三边D. 两点确定一条直线3. 大小在和之间的整数有()A. 0个B. 1个C. 2个D. 3个4. 下列运算中,正确的是( )A. a2+a=a3B. (ab)2=ab2C. a5÷a2=a3D. a5・a2=a105. 关于x的方程x24x+m=0有两个不相等的实数根,则m的取值范围是( )A. m>2B. m<2C. m>4D. m<46. 超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,设货架上原有鸡蛋的质量(单位:g)平均数和方差分别为,s2,该顾客选购的鸡蛋的质量平均数和方差1,,则下列结论一定成立的是( )A. 1B. 1C. s2>D. s27. 一把直尺与一块直角三角板按如图方式摆放,若∠1=47°,则∠2=( )A. 40°B. 43°C. 45°D. 47°8. 已知(a+b)2=49,a2+b2=25,则ab=( )A. 24B. 48C. 12D. 29. 将x克含糖10的糖水与y克含糖30的糖水混合,混合后的糖水含糖( )A. 20B. C. D. 10. 如图,将长、宽分别为12cm,3cm的长方形纸片分别沿AB,AC折叠,点M,N恰好重合于点P.若∠α=60°,则折叠后的图案(阴影部分)面积为( )A. (36)cm2B. (36)cm2C. 24 cm2D. 36 cm2二、填空题(本题有6小题,每小题5分,共30分)11. 因式分解:xyy2=_____.12. 一个不透明布袋中有2个红球,1个白球,这些球除颜色外无其他差别,从中随机模出一个小球,该小球是红色的概率为_____.13. 如图,将线段AB绕点A顺时针旋转30°,得到线段AC.若AB=12,则点B经过的路径长度为_____.(结果保留π)14. 如图,点E, F,G分别在正方形ABCD的边AB,BC,AD上,AF⊥EG.若AB=5,AE=DG=1,则BF=_____.15. 如图,在△ABC中,∠ACB=90°,AC<BC.分别以点A,B为圆心,大于AB的长为半径画弧,两弧交于D,E两点,直线DE交BC于点F,连接AF.以点A为圆心,AF为半径画弧,交BC延长线于点H,连接AH.若BC=3,则△AFH的周长为_____.16. 以初速度v(单位:m/s)从地面竖直向上抛出小球,从抛出到落地的过程中,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=vt4.9t2,现将某弹性小球从地面竖直向上抛出,初速度为v1,经过时间t1落回地面,运动过程中小球的最大高度为h1(如图1);小球落地后,竖直向上弹起,初速度为v2,经过时间t2落回地面,运动过程中小球的最大高度为h2(如图2).若h1=2h2,则t1:t2=_____.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24分14分,共80分)17. 计算:|2|+.18. 解方程组:19. 图1是放置在水平地面上的落地式话筒架实物图,图2是其示意图.支撑杆AB垂直于地l,活动杆CD固定在支撑杆上的点E处,若∠AED=48°,BE=110 cm,DE=80 cm,求活动杆端点D离地面的高度DF.(结果精确到1cm,参考数据:sin48°≈0.74, cos48°≈0.67, tan48°≈1. 11)20. 小华输液前发现瓶中药液共250毫升,输液器包装袋上标有15滴/毫升.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量;(2)求小华从输液开始到结束所需的时间.21. 如图,在四边形ABCD中,AB=AD=20,BC=DC=10(1)求证:△ABC≌△ADC;
上传时间:2023-05-08 页数:8
323人已阅读
(5星级)
2021年广西柳州市中考道德与法治真题第Ⅰ卷(选择题,共28分)一、选择题(请从各小题四个备选答案中选出最符合题意的一项。共14小题,每小题2分,共28分)1. 在奋斗的路上,你若能看清自身的条件和特点,找到适合自己奔跑的那双鞋,也许就成功了一半,对此理解正确的是()A. 每个人的一生都是精彩的B. 只能通过他人评价来完善自己C. 接纳和欣赏自己就能成功D. 正确认识自己以促进自我发展2. 2020年底,新修订的《上海市轨道交通乘客守则》施行,规定禁止在轨道区域使用电子设备外放。这启示我们()①遵守规则,文明出行②无视规则,追求自由 ③换位思考,尊重他人④改进规则,满足自我A. ①③B. ①④C. ②③D. ②④3. 当前,在现代制造业、战略性新兴产业和现代服务业等领域,一线新增从业人员70%以上来自职业院校。这呼唤()A. 人人都必须选择新兴职业B. 职业院校只需开设装备制造专业C. 社会只尊重技术技能人才D. 国家应该高度重视发展职业教育4. 一个国家只有立足粮食基本自给,才能掌握粮食安全主动权,进而才能掌握经济社会发展这个大局,下列有助于保护粮食安全的举措有()①落实最严格的耕地保护制度②调动农民种粮的积极性③依赖国外先进农业科学技术④坚持不懈反对餐饮浪费A. ①②③B. ①②④C. ①③④D. ②③④5. 琦琪的爸爸在一家国有企业上班,每个月工资收入1万多元,年底还有2万元奖金。琦琪爸爸的工资、奖金属于()A. 按劳分配B. 非劳动收入C. 按生产要素分配D. 社会保障收入6. 2020年11月8日,人类铁路史上迄今最具挑战性的工程——川藏铁路(雅安至林芝段)开工建设,这是一条穿过广大民族地区的铁路,建成后将会成为一条致富路、文明路、民族团结路。这说明我国()①消除各少数民族地区的发展差别②大力支持民族地区的经济社会发展③坚持各民族共同繁荣的基本原则④扩大了各少数民族人民的政治权利A. ①③B. ④C. ②③D. ③④7. 集文化、健康、武术三种属性于一体的中国太极拳,经世代传承,不断创新,在全球产生广泛影响,据不完全统计,全球150多个国家和地区练习太极拳者已达数亿人。这表明()①文化既是民族的,又是世界的②中华文化完成了创新性发展③中华文化对世界的影响越来越大④世界各国完全接受中华文化A. ①②B. ①③C. ②④D. ③④8. 国家主席习近平在2020气候雄心峰会上宣布:中国将自主贡献一系列新举措,倡议开创合作共赢的气候治理新局面,形成各尽所能的气候治理新体系,坚持绿色复苏的气候治理新思路。这表明()A. 中国参与国际事务并贡献中国智慧B. 世界各国齐心解决全球性问题C. 各国在气候治理问题上已达成共识D. 中国主导世界气候治理新局面9. 2021年2月,教育部发布《关于加强中小学生手机管理工作的通知》,要求中小学生原则上不得将手机带入校园,确有需求的,须家长同意并提出书面申请,进校后手机要由学校统一保管,禁止带入课堂。该举措()①给予学生特殊保护和关爱②目的在于禁止学生参与网络生活③彻底根除学生手机依赖症④有利于学校依法管理学生的手机A. ①③B. ①④C. ②③D. ②④10. 2021年2月5日,江苏省南京市中级人民法院一审公开宜判中国科学技术协会原党组成员、书记处书记陈刚受贿案,对被告人陈刚以受贿罪判处有期徒刑十五年,并处罚金人民币五百万元。陈刚受到的处罚属于()A. 纪律处分B. 行政处分C. 刑罚处罚D. 行政处罚11. 全国人大常委会在2021年度工作要点中指出:依法撤销、纠正一切违反宪法法律的法规、司法解释和其他规范性文件。因为我国宪法()A. 规定国家生活中最根本、最重要的问题B. 制定和修改程序比其他法律更加严格C. 是一切组织和个人的根本活动准则D. 是其他法律的立法基础和立法依据12. 漫画《全民接种》体现了国家保护公民的()A. 政治自由B. 财产安全C. 生命健康D. 人格尊严13. 每年3月1日是世界零歧视日,2021年的主题是结束不平等。反对歧视,结束不平等需要()A. 保障每个公民的权利无差别B. 反对特权保证人人平等C. 每个公民要履行相同的义务D. 勇敢抵制不平等的行为14. 2021年4月,柳州市委、市政府接到中央生态环境保护督察组交办的群众信访举报线索后,第一时间责成相关部门调查核实、立行立改,新闻媒体持续公布办理结果。这说明()①政府公开政务,提高政府的公信力
上传时间:2023-05-08 页数:5
323人已阅读
(5星级)
中考总复习:几何初步及三角形—巩固练习(提高)【巩固练习】一、选择题1.如图所示,下列说法不正确的是( ). A.点B到AC的垂线段是线段AB B.点C到AB的垂线段是线段AC C.线段AD是点D到BC的垂线段 D.线段BD是点B到AD的垂线段 2.如图,标有角号的7个角中共有____对内错角,____对同位角,____对同旁内角.() A.4、2、4 B.4、3、4 C.3、2、4 D.4、2、33.把一张长方形的纸片按下图所示的方式折叠,EM、FM为折痕,折叠后的C点落在B′M或B′M的延长线上,则∠EMF的度数是( ). A.85° B.90° C.95° D.100°4.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE 的中点, 且S△ABC=4cm2,则阴影面积等于( ).A.2cm2 B.1cm2 C.cm2 D.cm2 5.(2014秋•金昌期末)钟表4点30分时,时针与分针所成的角的度数为()A.45°B.30°C.60°D.75°6. △ABC中,AB=AC=,BC=6,则腰长的取值范围是( ).A. B.C. D.1 二、填空题7.如图,AD∥BC,BD平分∠ABC,且∠A=110°,则∠D=________. 8.(2014春•兴业县期末)如图,已知AB∥CD∥EF,则∠x、∠y、∠z三者之间的关系是.9.已知a、b、c是△ABC的三边,化简|a+b―c|+|b―a―c|―|c+b―a|=____________.10.已知在△ABC中,∠ABC和∠ACB三等分线分别交于点D、E,若∠A=n°,则∠BDC=___,∠BEC=___.11.在△ABC中,若∠A+∠B=∠C,则此三角形为_____三角形;若∠A+∠B <∠C,则此三角形是_____三角形.12.如图所示,∠ABC与∠ACB的内角平分线交于点O,∠ABC 的内角平分线与∠ACB的外角平分线交于点 D,∠ABC与∠ACB的相邻外角平分线交于点E,且∠A=60°,则∠BOC=______,∠D=______,∠E=_______.三、解答题213.(2015春•山亭区期末)如图,AD∥BC,∠BAC=70°,DE⊥AC于点E,∠D=20°.(1)求∠B的度数,并判断△ABC的形状;(2)若延长线段DE恰好过点B,试说明DB是∠ABC的平分线.14.平面内的两条直线有相交和平行两种位置关系.(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD +∠D,得∠BPD=∠B-∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需证明);(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数. 15.已知:如图,D、E是△ABC内的两点.求证:AB+AC>BD+DE+EC.316.如图,求∠A+∠B+∠C+∠D+∠E的度数. 【答案与解析】一、选择题1.【答案】C.【解析】重点考查垂线段的定义.2.【答案】A.3.【答案】B. 【解析】因为折叠,所以∠1=∠2,∠3=∠4,又因为∠1=∠2+∠3+∠4=180°,所以∠EMF=∠2+∠3=90°.4.【答案】B.【解析】∵D,E分别为边BC,AD的中点,∴S△ABD= S△ADC =2cm2 ,S△ABE= S△AEC =1cm2∴S△BEC=2cm2又因为F分别为边CE 的中点,所以S△BEF= S△BCF =1cm2.5.【答案】C.【解析】∵4点30分时,时针指向4与5之间,分针指向6,钟表12个数字,每相邻两个数字之间的夹角为30°,∴4点30分时分针与时针的夹角是2×30°﹣15°=45度.故选A.6.【答案】B.【解析】∵2x>6,∴x>3. 二、填空题7.【答案】35°. 8.【答案】x=180°+zy﹣.【解析】∵CDEF∥,∴∠CEF=180°y﹣,∵ABEF∥,∴∠x=AEF=z+CEF∠∠∠,即x=180°+zy﹣.故答案为:x=180°+zy﹣.49.【答案】3a―b―c.【解析】∵a、b、c是△ABC的三边,∴a+b>c,a+c>b,c+b>a。
上传时间:2023-04-30 页数:7
323人已阅读
(5星级)
客服
客服QQ:
2505027264
客服电话:
18182295159(不支持接听,可加微信)
微信小程序
微信公众号
回到顶部