

整式的加减(一)——合并同类项(基础)【学习目标】1.掌握同类项及合并同类项的概念,并能熟练进行合并;2. 掌握同类项的有关应用; 3. 体会整体思想即换元的思想的应用.【要点梳理】要点一、同类项定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项.要点诠释:(1)判断是否同类项的两个条件:①所含字母相同;②相同字母的指数分别相等,同时具备这两个条件的项是同类项,缺一不可.(2)同类项与系数无关,与字母的排列顺序无关.(3)一个项的同类项有无数个,其本身也是它的同类项.要点二、合并同类项1. 概念:把多项式中的同类项合并成一项,叫做合并同类项.2.法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变.要点诠释:合并同类项的根据是乘法分配律的逆运用,运用时应注意:(1)不是同类项的不能合并,无同类项的项不能遗漏,在每步运算中都含有.(2) 合并同类项,只把系数相加减,字母、指数不作运算.【典型例题】类型一、同类项的概念1.指出下列各题中的两项是不是同类项,不是同类项的说明理由.(1)与;(2)与;(3)与; (4)与【答案与解析】本题应用同类项的概念与识别进行判断: 解:(1)(4)是同类项;(2)不是同类项,因为与所含字母的指数不相等;(3)不是同类项,因为与所含字母不相同.【总结升华】辨别同类项要把准两相同,两无关,两相同是指:①所含字母相同;②相同字母的指数相同. 两无关是指:①与系数及系数的指数无关;②与字母的排列顺序无关.举一反三:【变式】下列每组数中,是同类项的是() .①2x2y3与x3y2 ②-x2yz与-x2y③10mn与④(-a)5与(-3)5⑤-3x2y与0.5yx2⑥-125与A.①②③B.①③④⑥C.③⑤⑥D.只有⑥1【答案】C 2.(2016•乐亭县二模)若﹣2amb4与3a2bn+2是同类项,则m+n= .【思路点拨】直接利用同类项的概念得出n,m的值,即可求出答案.【答案】4.【解析】解:∵﹣2amb4与3a2bn+2是同类项,∴,解得:则m+n=4.故答案为:4.【总结升华】考查了同类项定义.同类项定义中的两个相同:所含字母相同,相同字母的指数相同.举一反三:【变式】已知 和 是同类项,试求的值.【答案】类型二、合并同类项3.合并下列各式中的同类项:(1)-2x2-8y2+4y2-5x2-5x+5x-6xy(2)3x2y-4xy2-3+5x2y+2xy2+5【答案与解析】解: (1)-2x2-8y2+4y2-5x2-5x+5x-6xy=(-2-5)x2+(-8+4)y2+(-5+5)x-6xy=-7x2-4y2-6xy(2)3x2y-4xy2-3+5x2y+2xy2+5=(3+5)x2y+(-4+2)xy2+(-3+5)=8x2y-2xy2+2【总结升华】(1)所有的常数项都是同类项,合并时把它们结合在一起,运用有理数的运算法则进行合并;(2)在进行合并同类项时,可按照如下步骤进行:第一步:准确地找出多项式中的同类项(开始阶段可以用不同的符号标注),没有同类项的项每一步保留该项;第二步:利用乘法分配律的逆运用,把同类项的系数相加,结果用括号括起来,字母和字母的指数保持不变;第三步:写出合并后的结果.举一反三:【变式】(2015•玉林)下列运算中,正确的是()A. 3a+2b=5abB. 2a3+3a2=5a5C. 3a2b﹣3ba2=0 D. 5a2﹣4a2=1【答案】C解:3a和2b不是同类项,不能合并,A错误;22a3+和3a2不是同类项,不能合并,B错误;3a2b﹣3ba2=0,C正确;5a2﹣4a2=a2,D错误,故选:C.4.已知,求m+n-p的值.【思路点拨】两个单项式的和一般情形下为多项式.而条件给出的结果中仍是单项式,这就意味着与是同类项.因此,可以利用同类项的定义解题.【答案与解析】解:依题意,得3+m=4,n+1=5,2-p=-7解这三个方程得:m=1,n=4,p=9,∴m+n-p=1+4-9=-4.【总结升华】要善于利用题目中的隐含条件.举一反三:【变式】若与的和是单项式,则,.【答案】4,2.类型三、化简求值5. 当时,分别求出下列各式的值.(1);(2)【答案与解析】(1)把当作一个整体,先化简再求值:解:又 所以,原式=(2)先合并同类项,再代入求值.解:3
上传时间:2023-04-30 页数:4
269人已阅读
(5星级)
中考冲刺:几何综合问题—知识讲解(基础)【中考展望】 几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力.这类题型在近几年全国各地中考试卷中占有相当的分量,不仅有选择题、填空题、几何推理计算题以及代数与几何的综合计算题,还有更注重考查学生分析问题和解决问题能力的探究性的问题、方案设计的问题等等.主要特点是图形较复杂,覆盖面广、涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.几何综合题的呈现形式多样,如折叠类型、探究型、开放型、运动型、情景型等,背景鲜活,具有实用性和创造性,考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能力.以几何为主的综合题常常在一定的图形背景下研究以下几个方面的问题:1、证明线段、角的数量关系(包括相等、和、差、倍、分及比例关系等);2、证明图形的位置关系(如点与线、线与线、线与圆、圆与圆的位置关系等);3、几何计算问题;4、动态几何问题等.【方法点拨】一、几何计算型综合问题,常常涉及到以下各部分的知识:1、与三角形有关的知识;2、等腰三角形,等腰梯形的性质;3、直角三角形的性质与三角函数;4、平行四边形的性质;5、全等三角形,相似三角形的性质;6、垂径定理,切线的性质,与正多边形有关的计算;7、弧长公式与扇形面积公式.二、几何论证型综合题的解答过程,要注意以下几个方面:1、注意图形的直观提示,注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形;2、注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础,要由已知联想经验,由未知联想需要,不断转化条件和结论来探求思路,找到解决问题的突破点;3、要运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题,还要灵活运用数学思想方法如数形结合、分类讨论、转化、方程等思想来解决问题.【典型例题】类型一、动态几何型问题1.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤6),那么:⑴当t为何值时,△QAP为等腰直角三角形?⑵求四边形QAPC的面积;提出一个与计算结果有关的结论;⑶当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?【思路点拨】⑴中应由△QAP为等腰直角三角形这一结论,需补充条件AQ=AP,由AQ=6-t,AP=2t,可求出t的值;⑵中四边形QAPC是一个不规则图形,其面积可由矩形面积减去△DQC与△PBC的面积求出;⑶中由于题目中未给出三角形的相似对应方式,因此需分类讨论.【答案与解析】解:(1)对于任何时刻t,AP=2t,DQ=t,QA=6-t.当QA=AP时,△QAP为等腰直角三角形,即6-t=2t,解得:t=2(s),所以,当t=2s时,△QAP为等腰直角三角形.1DABCQP(2)在△QAC中,QA=6-t,QA边上的高DC=12,∴S△QAC=12QA•DC=12(6-t)•12=36-6t.在△APC中,AP=2t,BC=6,∴S△APC=12AP•BC=12•2t•6=6t.∴S四边形QAPC=S△QAC+S△APC=(36-6t)+6t=36(cm2).由计算结果发现:在P、Q两点移动的过程中,四边形QAPC的面积始终保持不变.(也可提出:P、Q两点到对角线AC的距离之和保持不变)(3)根据题意,可分为两种情况,在矩形ABCD中:①当QAAPABBC时,△QAP∽△ABC,则有:62126tt,解得t=1.2(s),即当t=1.2s时,△QAP∽△ABC;②当QAAPBCAB时,△PAQ∽△ABC,则有:62612tt,解得t=3(s),即当t=3s时,△PAQ∽△ABC;所以,当t=1.2s或3s时,以点Q、A、P为顶点的三角形与△ABC相似.【总结升华】本题是动态几何题,同时也是一道探究题.要求学生具有一定的发现、归纳和表达能力,这就要求我们通过计算分析,抓住其本质,揭示出变中不变的规律.四边形QAPC的面积也可由△QAC与△CAP的面积求出,;⑶中考查了分类讨论的数学思想,结论具有一定的开放性.2.(永春县校级月考)如图,在梯形ABCD中,ADBC∥,AD=3,CD=5,BC=10,梯形的高为4,动点M从点B出发沿线段BC以每秒2个单位长度向终点C运动;动点N同时从点C出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒(1)直接写出梯形ABCD的中位线长;(2)当MNAB∥时,求t的值;(3)试探究:t为何值时,使得MC=MN.【思路点拨】(1)直接利用梯形中位线的定理求出
上传时间:2023-04-30 页数:10
268人已阅读
(5星级)
弧长和扇形面积、圆锥的侧面展开图--知识讲解(提高)【学习目标】1.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长和扇形面积 的计算公式,并应用这些公式解决问题;2.了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,会应用公式解决问题;3. 能准确计算组合图形的面积.【要点梳理】要点一、弧长公式半径为R的圆中360°的圆心角所对的弧长(圆的周长)公式:n°的圆心角所对的圆的弧长公式:(弧是圆的一部分)要点诠释:(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的,即;(2)公式中的n表示1°圆心角的倍数,故n和180都不带单位,R为弧所在圆的半径;(3)弧长公式所涉及的三个量:弧长、圆心角度数、弧所在圆的半径,知道其中的两个量就可以求出第三个量.要点二、扇形面积公式1.扇形的定义 由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.2.扇形面积公式 半径为R的圆中360°的圆心角所对的扇形面积(圆面积)公式:n°的圆心角所对的扇形面积公式:要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.要点三、圆锥的侧面积和全面积连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.圆锥的母线长为,底面半径为r,侧面展开图中的扇形圆心角为n°,则圆锥的侧面积,圆锥的全面积.1要点诠释:扇形的半径就是圆锥的母线,扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积,全面积是由侧面积和底面圆的面积组成的.【典型例题】类型一、弧长和扇形的有关计算1. 如图所示,一纸扇完全打开后,外侧两竹条AB、AC的夹角为120°,BC的长为20πcm,那么AB的长是多少?【答案与解析】 ∵180nRl,∴12020180R. 解得R=30 cm. 答:AB的长为30cm.【总结升华】由弧长公式180nRl知,已知l、n,可求R.举一反三:359387 弧长 扇形 圆柱 圆锥经典例题5-6【变式】一个圆柱的侧面展开图是相邻边长分别为10和16的矩形,则该圆柱的底面圆半径是.【答案】由圆柱的侧面展示图知:2πr=10或2πr=16,解得58.r或2.如图所示,矩形ABCD中,AB=1,AD=3,以BC的中点E为圆心的MPN与AD相切于点P,则图中阴影部分的面积是多少?【答案与解析】2 ∵BC=AD=3,∴32BE. 连接PE,∵AD切⊙E于P点,∴PE⊥AD. ∵∠A=∠B=90°. ∴四边形ABEP为矩形, ∴PE=AB=1. 在Rt△BEM中,33212BEME,∠BEM=30°.同理∠CEN=30°,∴∠MEN=180°-30°×2=120°.∴2212013603603nRS扇形.【总结升华】由MPN与AD相切,易求得扇形MEN的半径,只要求出圆心角∠MEN就可以利用扇形面积公式求得扇形MEN的面积.举一反三:359387 弧长 扇形 圆柱 圆锥经典例题5-6【变式】若圆锥经过轴的截面是一个正三角形,则它的侧面积与底面积之比是().A.3:2 B.3:1C.5:3 D.2:1【答案】D;【解析】设圆锥底面圆的半径为r,∴S底=πr2,S侧=•2r•2πr=2πr2,∴S侧:S底=2πr2:πr2=2:1.类型二、圆锥面积的计算3.如图(1),从一个直径是2的圆形铁皮中剪下一个圆心角为90的扇形.(1)求这个扇形的面积(结果保留).(2)在剩下的三块余料中,能否从第③块余料中剪出一个圆作为底面与此扇形围成一个圆锥?请说明理由. (3)当⊙O的半径(0)RR为任意值时,(2)中的结论是否仍然成立?请说明理由. 【答案与解析】(1)连接BC,如图(2),由勾股定理求得:3图(1) ABCO①②③ABCO①②③EF2ABAC 213602nRS (2)连接AO并延长,与弧BC和O交于EF,,22EFAFAE 弧BC的长:21802nRl ,图(2)222r圆锥的底面直
上传时间:2023-04-30 页数:6
268人已阅读
(5星级)
同位角、内错角、同旁内角 知识讲解【学习目标】1.了解三线八角模型特征;2.掌握同位角、内错角、同旁内角的概念,并能从图形中识别它们.【要点梳理】要点一、同位角、内错角、同旁内角的概念1. 三线八角模型如图,直线AB、CD与直线EF相交(或者说两条直线AB、CD被第三条直线EF所截),构成八个角,简称为三线八角,如图1.要点诠释:⑴两条直线AB,CD与同一条直线EF相交.⑵三线八角中的每个角是由截线与一条被截线相交而成.2. 同位角、内错角、同旁内角的定义在三线八角中,如上图1,(1)同位角:像∠1与∠5,这两个角分别在直线AB、CD的同一方,并且都在直线EF的同侧,具有这种位置关系的一对角叫做同位角.(2)内错角:像∠3与∠5,这两个角都在直线AB、CD之间,并且在直线EF的两侧,像这样的一对角叫做内错角.(3)同旁内角:像∠3和∠6都在直线AB、CD之间,并且在直线EF的同一旁,像这样的一对角叫做同旁内角.要点诠释: (1)三线八角是指上面四个角中的一个角与下面四个角中的一个角之间的关系,显然是没有公共顶点的两个角.(2)三线八角中共有4对同位角,2对内错角,2对同旁内角. 403102要点二、同位角、内错角、同旁内角位置特征及形状特征1图1要点诠释:巧妙识别三线八角的两种方法:(1)巧记口诀来识别: 一看三线,二找截线,三查位置来分辨.(2)借助方位来识别根据这三种角的位置关系,我们可以在图形中标出方位,判断时依方位来识别,如图2. 【典型例题】类型一、三线八角模型1. (1)图3中,∠1、∠2由直线2被直线所截而成.(2)图4中,AB为截线,∠D是否属于以AB为截线的三线八角图形中的角?【答案】(1) EF,CD; AB. (2)不是 .【解析】(1)∠1、∠2两角共同的边所在的直线为截线,而另一边所在的直线为被截线.(2)因为∠D的两边都不在直线AB上,所以∠D不属于以AB为截线的三线八角图形中的角.【总结升华】判断 三线八角的关键是找出哪两条直线是被截线,哪条直线是截线.类型二、同位角、内错角、同旁内角的辨别2.如图,(1)DE为截线,∠E与哪个角是同位角?(2)∠B与∠4是同旁内角,则截出这两个角的截线与被截线是哪些直线? (3)∠B和∠E是同位角吗?为什么?【答案与解析】解:(1)DE为截线,∠E与∠3是同位角;(2)截出这两个角的截线是直线BC,被截线是直线BF、DE;(3)不是,因为∠B与∠E的两边中任一边没有落在同一直线上,所以∠B和∠E不是同位角.【总结升华】确定角的关系的方法:(1)先找出截线,由截线与其它线相交得到的角有哪几个;(2)将这几个角抽出来,观察分析它们的位置关系;(3)再取其它的线为截线,再抽取与该截线相关的角来分析.举一反三:【变式】(2016春•邹城市校级期中)如图所示,下列说法错误的是()A.∠1和∠3是同位角B.∠1和∠5是同位角C.∠1和∠2是同旁内角D.∠5和∠6是内错角3【答案】B解:从图上可以看出∠1和∠5不存在直接联系,而其它三个选项都符合各自角的定义,正确.3. (2014秋•太康县期末)如图,用数字标出的八个角中,同位角、内错角、同旁内角分别有哪些?请把它们一一写出来.【答案与解析】解:内错角:∠1与∠4,∠3与∠5,∠2与∠6,∠4与∠8;同旁内角:∠3与∠6,∠2与∠5,∠2与∠4,∠4与∠5;同位角:∠3与∠7,∠2与∠8,∠4与∠6.【总结升华】要分析各对角是由哪两条直线被哪一条直线所截的,可以把复杂图形按题目要求分解成简单的图形后,结论便一目了然.举一反三:【变式】如图∠1、∠2、∠3、∠4、∠5中,哪些是同位角?哪些是内错角?哪些是同旁内角?【答案】解:同位角:∠5与∠1,∠4与∠3;内错角:∠2与∠3,∠4与∠1;同旁内角:∠4与∠2,∠5与∠3,∠5与∠4.4031024. 分别指出下列图中的同位角、内错角、同旁内角.【答案与解析】解: 同位角:∠B与∠ACD,∠B与∠ECD; 内错角:∠A与∠ACD,∠A与∠ACE; 同旁内角:∠B与∠ACB,∠A与∠B,∠A与∠ACB,∠B与∠BCE.【总结升华】在复杂图形中,分析同位角、内错角、同旁内角,应把图形分解成几个两条直4线与同一条直线相交的图形,并抽取交点处的角来分析.举一反三:【变式】请写出图中的同位角、内错角、同旁内角.【答案】解:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8是同位角;∠2与∠8,∠3与∠5是内错角;∠2与∠5,∠3与∠8是同旁内角.类型三、同位角、内错角、同旁内角大小之间的关系5. 如图直线DE、BC被直线AB所截,(1)∠1和∠2、∠1和∠3、∠1和∠4各是什么角?每组中两角的
上传时间:2023-04-30 页数:6
268人已阅读
(5星级)
【巩固练习】一、选择题1.已知方程||(1)34mmx是关于x的一元一次方程,则m的值是().A.±1B.1 C.-1D.0或12.已知1x是方程122()3xxa的解,那么关于y的方程(4)24ayaya的解是().A.y=1B.y=-1C.y=0D.方程无解3.已知2(1)3(1)4(1)xyxyyxyx,则xy等于().A.65 B.65 C.56 D.564.(2015春•镇巴县校级月考)甲数是2013,甲数是乙数的还多1.设乙数为x,则可列方程为() A.4(x﹣1)=2013B.4x﹣1=2013C.x+1=2013D.(x+1)=20135.一架飞机在两城间飞行,顺风要5.5小时,逆风要6小时,风速为24千米/时,求两城距离x的方程是()A.24245.56xxB.24245.56xxC. 2245.565.5xxD.245.56xx6.某商场的老板销售一种商品,他要以不低于进价20%价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价多少时商店老板才能出售()A.80元B.100元C.120元D.160元7.某书中一道方程题:213xx,□处在印刷时被墨盖住了,查书后面的答案,得知这个方程的解是x=﹣2.5,那么□处应该是数字().A.-2.5B.2.5C.5D.78. 已知:2222233,2333388,244441515,255552424,…,若21010bbaa符合前面式子的规律,则a+b的值为().A. 179B.140C.109D.210二、填空题9.已知方程2235522axxxxa是关于x的一元一次方程,则这个方程的解为________.110.已知|4|mn和2(3)n互为相反数,则22mn________. 11.当x=________时,代数式453x的值为-1.12.一商店把某商品按标价的九折出售仍可获得20%的利润率,若该商品的进价是每件30元,则标价是每件 元.13.(2015•江西校级模拟)20××年3月份有5个星期六,它们的日期之和是80,若当月第三个星期六的日期为x,那么x=.14.有一列数,按一定的规律排列:―1,2,―4,8,―16,32,―64,128,…,其中某三个相邻数之和为384,这三个数分别是 .15.已知关于x的方程3242axxx和方程3151128xax有相同的解,则出该方程的解为.16.(2016春•南安市期中)方程|x﹣k|=1的一个解是x=2,那么k=.三、解答题17.解方程:(1)0.40.90.030.0250.50.032xxx.(2))12(43)]1(31[21xxx(3)|3x-2|-4=018.(2016春•重庆校级月考)方程和方程的解相同,求a的值.19.(2015•海淀区二模)小明坚持长跑健身.他从家匀速跑步到学校,通常需30分钟.某周日,小明与同学相约早上八点学校见,他七点半从家跑步出发,平均每分钟比平时快了40米,结果七点五十五分就到达了学校,求小明家到学校的距离.20.商场计划拨款9万元,从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出场价分别为甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号的电视机的方案中,为使销售时获利最多,该选择哪种进货方案?2【答案与解析】一、选择题1. 【答案】B 【解析】由题意得|m|=1,且m+1≠0,所以m=1,故选B. 2. 【答案】C 【解析】由x=1是方程122()3xxa的解,可代入求出a的值,然后把a的值代入方程a(y+4)=2ay+4a中,求出y的值.3. 【答案】D 【解析】由原式可得:()2()233()4()4xyxyxyxy,将xy
上传时间:2023-04-30 页数:6
268人已阅读
(5星级)
2021年广西贺州市中考数学试卷一、选择题:(本大题共12小题,每小题3分,共36分:给出的四个选项中,只有一项是符合题目要求的在试卷上作答无效)1. 2的倒数是()A. B. C. D. 2【答案】A【解析】【分析】根据倒数的定义,可以求得题目中数字的倒数,本题得以解决.【详解】解:2的倒数是,故选:A.【点睛】本题考查倒数,解答本题的关键是明确倒数的定义.2. 如图,下列两个角是同旁内角的是()A. 与B. 与C. 与D. 与【答案】B【解析】【分析】根据同旁内角的概念求解即可.【详解】解:由图可知,∠1与∠3是同旁内角,∠1与∠2是内错角,∠4与∠2是同位角,故选:B.【点睛】本题考查了同旁内角的概念,属于基础题,熟练掌握同位角,同旁内角,内错角的概念是解决本题的关键.3. 下列事件中属于必然事件的是()A. 任意画一个三角形,其内角和是180°B. 打开电视机,正在播放新闻联播C. 随机买一张电影票,座位号是奇数号D. 掷一枚质地均匀的硬币,正面朝上【答案】A【解析】【分析】根据必然事件的意义,结合具体的问题情境逐项进行判断即可.【详解】解:A、任意画一个三角形,其内角和是180°;属于必然事件,故此选项符合题意;B、打开电视机,正在播放新闻联播;属于随机事件,故此选项不符合题意;C、随机买一张电影票,座位号是奇数号;属于随机事件,故此选项不符合题意;D、掷一枚质地均匀的硬币,正面朝上;属于随机事件,故此选项不符合题意;故选:A.【点睛】本题考查了随机事件、必然事件,理解必然事件的意义是正确判断的前提,结合问题情境判断事件发生的可能性是正确解答的关键.4. 在平面直角坐标系中,点关于原点对称的点的坐标是()A. (-3,2)B. (3,-2)C. (-2,-3)D. (-3,-2)【答案】D【解析】【分析】由两个点关于原点对称时,它们的坐标符号相反特点进行求解.【详解】∵两个点关于原点对称时,它们的坐标符号相反,∴点关于原点对称的点的坐标是(-3,-2).故选:D.【点睛】考查了关于原点对称的点的坐标,解题关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.5. 下列四个几何体中,左视图为圆的是()A. B. C. D. 【答案】A【解析】【分析】根据三视图的法则可得出答案.【详解】解:左视图为从左往右看得到的视图,A.球的左视图是圆,B.圆柱的左视图是长方形,C.圆锥的左视图是等腰三角形,D.圆台的左视图是等腰梯形,故符合题意的选项是A.【点睛】错因分析较容易题.失分原因是不会判断常见几何体的三视图.6. 直线()过点,,则关于的方程的解为()A. B. C. D. 【答案】C【解析】【分析】关于的方程的解为函数的图象与x轴的交点的横坐标,由于直线过点A(2,0),即当x=2时,函数的函数值为0,从而可得结论.【详解】直线()过点,表明当x=2时,函数的函数值为0,即方程的解为x=2. 故选:C.【点睛】本题考查了一次函数与一元一次方程的关系,即一元一次方程的解是一次函数的图象与x轴交点的横坐标,要从数与形两个方面来理解这种关系.7. 多项式因式分解为()A. B. C. D. 【答案】A【解析】【分析】先提取公因式,再利用完全平方公式将括号里的式子进行因式分解即可【详解】解:故答案选:A.【点睛】本题考查了提公因式法和公式法进行因式分解.正确应用公式分解因式是解题的关键.8. 若关于的分式方程有增根,则的值为()A. 2B. 3C. 4D. 5【答案】D【解析】【分析】根据分式方程有增根可求出,方程去分母后将代入求解即可.【详解】解:∵分式方程有增根,∴,去分母,得,将代入,得,解得.故选:D.【点睛】本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键.9. 如图,在边长为2的等边中,是边上的中点,以点为圆心,为半径作圆与,分别交于,两点,则图中阴影部分的面积为()A. B. C. D. 【答案】C【解析】【分析】由等边中,是边上的中点,可知扇形的半径为等边三角形的高,利用扇形面积公式即可求解.【详解】是等边三角形,是边上的中点,扇形故选C.【点睛】本题考查了等边三角形的性质,勾股定理,扇形面积公式,熟练等边三角形性质和扇形面积公式,求出等边三角形的高是解题的关键.10. 如图,在中,,,点在上,,以为半径的与相切于点,交于点,则的长为()A. B. C. D. 1【答案】B【解析】【分析】连接OD,EF,可得OD∥BC,EF∥AC,从而得,,进而即可求解.【详解】解:连接OD,EF,∵
上传时间:2023-05-08 页数:25
267人已阅读
(5星级)
地球的内部构造地球本身就是一座巨大的天然储热库。所谓地热能就是地球内部蕴藏的热能。有关地球内部的知识是从地球表面的直接观察及钻井的岩样和火山喷发、地震等资料推断而得到的。根据现在的认识,地球的构成是这样的:地球是一个巨大的实心椭球体,表面积约为51000X 104km,体积约为10833 x 108km3,赤道半径为6378km, 极半径为6357km。地球的构造好象是一只半熟的鸡蛋,主要分为三层,在约2800km厚、温度在1000°C的铁-镁硅酸盐地幔上有一薄层(厚约30km)铝-硅酸盐地壳,它的厚度各处不一,介于10~70km之间,陆地上平均为30~40km,高山底下可达60~70km,海底下仅为10km左右;地幔下面是液态铁-镍地核,其内还含有一个固态的内核,温度在2000~5000℃之间,外核深2900~5100km, 内核深5100km以下至地心。在6~70km厚的表层地壳和地幔之间有个分界面,通常称之为莫霍不连续面。莫霍界面会反射地震波。从地表到深100~200km为刚性较大的岩石圈。由于地球内圈和外圈之间存在较大的温度梯度,所以其间有黏性物质不断循环。地球内部各区段情况如下表所示。 区段状态结合带深度[km]温度[°C]密度[g/cm3]成分区段地壳 00-50 岩石圈刚性板块 10-20 2.7钠、钾、铝硅酸盐 莫霍6-70500-100030铁、钙、镁、铝硅酸盐地幔 固态 固相线100-2001200 黏性物质 3.6-4.4铁、镁硅酸盐软流圈 固相线7001900 刚性地幔 地幔 固相线280037004.5-5.5铁、镁、硅酸盐和/或氧化物地核液态 地核 固相线5500430010-12铁、镍固态 中心63404500 铁、镍大洋壳层厚约6~10km,由玄武岩构成,大洋壳层会延伸到大陆壳层下面。大陆壳层则是由密度较小的钠钾铝一硅酸盐的花岗石组成,典型厚度约为35km,但是在造山地带其厚度可能达70km。地壳好像一个筏放在刚性岩石图上,岩石围又漂浮在截性物质构成的软流圈上。由于软流圈中的对流作用,会使大陆壳筏向各个方向移动,从而会导致某一大陆板块与其他大陆板块或大洋板块碰撞或分离。它们就是造成火山喷发、造山运动、地震等地质活动的原因。在图1中的箭头表示了板块和岩石围的运动及其下面黏性物质的热对流。地幔中的对流把热能从地球内部传到近地壳的表面地区,在那里热能可能绝热储存达百万年之久。虽然这里储热区的深度已大大超过了目前钻探技术所能达到的深度,但由于地壳表层中含有游离水,这些水有可能将热储区的热能带到地表附近,或穿出地面而形成温泉特别在所谓地质活动区更是如此。
上传时间:2023-04-30 页数:2
267人已阅读
(5星级)
(北师大版)山东省济南市历下区七年级数学下册期末试卷及答案考试时间120分钟满分120分(以下试卷分A、B卷,其中A卷为必徽;B卷为选徽,且不计入总分)A卷一、选择题(本大题共12小题,每题3分,共36分,每题四个选项中,只有一个选项符合要求.)1.20131的相反数是()A. 20131B. 20131C.2013D.-20132,有资料表明,被誉为地球之肺的森林正以每年15000000公顷的速度从地球上消失,每年森林的消失量用科学记数法表示应是()A.15×106公顷B. 1.5×107公顷C. 150×i05公顷D。0.15×l08公顷3.下列图形中为正方体的平面展开图的是() 4.下列调查中,适宜采用抽样调查方式的是()A.调查伦敦奥运会女子铅球参赛运动员兴奋剂的使用情况B.调查我校某班学生的身高情况C.调查一架歼380隐形战机各零部件的质量D.调查我国中学生每天体育锻炼的时间5.如图,点A位于点O的___方向上()A.南偏东350B.北偏西650C.南偏东650D.南偏西6506.下面合并同类项正确的是()A.3x+2x2=5x3B.2a2b-a2b=1c.-ab-ab=OD. -y2x+xy2 =07.下列语句正确的有() ①射线AB与射线BA是同一条射线 ②两点之间的所有连线中,线段最短 ③连结两点的线段叫做这两点的距离④欲将一根木条固定在墙上,至少需要2个钉子A.1个B.2个C.3个D.4个 8.下列说法不正确的是()A.为了反映雅安市七县一区人口分布多少情况,通常选择条形统计图 B.为了反映我市连续五年来中国民生产总值增长情况,通常选择折线统计图C.为了反映本校中学生人数占全市中学学生人数的比例情况,应选择扇形统计图D.以上三种统计图都可以直接找到所需数目 9.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是( )10.某工厂现有工人x人,若现有人数比两年前原有人数减少35%,则该工厂原有人数为( ) 11.在一张挂历上,任意圈出同一列上的三个数的和不可能是( )A.4B.33C.51D.2712.小明解方程去分母时.方程右边的-3忘记乘6.因而求出的解为x=2,问原方程正确的解为()来源:http://www.bcjy123.com/tiku/A.x=5B.x=7 C.x=-13D.x=-l二、填空题(本大题共10小题,每题3分,共30分)13.如果向东运动8m记作+8m,那么向西运动5m应记作____m.14.甲、乙、丙三地的海拔高度分别是20m、-15m、-5m,那么最高的地方比最低的地方高_________m.15.多项式的次数是______.16.写出一个解为x=2的一元一次方程(只写一个即可):____17.比较数的大小: 18.从一个多边形的某个顶点出发,分别连接这个点和其余各顶点,可以把这个多边形分割成十个三角形,则这个多边形的为________边形.19.把秒化成度、分、秒:3800″=______ °______′_______″.20.八年级一班共有48名学生,他们身高的频数分布直方图如图,各小长方形的高的比为1:1:3:2:l, 则身高范围在165cm~170cm的学生有________人.21.已知线段AB=lOcm,点C是直线AB上一点,BC=4cm:若M是AB的中点,N是BC的中点,则线段MN的长度是_______cm。22.如图所示的运算程序中,若开始输入的x值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,第2013次输出的结果为____.三、解答题(共54分)23.(每小题4分,共8分)计算:(1)26一l7+(一6)- 33 24.(5分)先化简,再求值:其中x=l,.y=-225.(每小题5分,共10分)解下列方程:(1) 9x - 3(x -1) = 6 26.(5分)如图OA平分∠BOC.求∠AOD的度数.来源:http://www.bcjy123.com/tiku/27.(5分)某餐厅中,一张桌子可坐6人,有以下两种摆放方式:(1)当有n张桌子时,两种摆放方式各能坐多少人?(2)一天中午餐厅要接98位顾客同时就餐,但餐厅只有25张这样的餐桌,若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌?为什么?28.(5分)某校为了进一步丰富学生的课外体育
上传时间:2023-04-30 页数:7
267人已阅读
(5星级)
中考总复习:图形的相似--知识讲解(提高)【考纲要求】1.了解线段的比、成比例线段、黄金分割、相似图形有关概念及性质.2.探索并掌握三角形相似的性质及条件,并能利用相似三角形的性质解决简单的实际问题.3.掌握图形位似的概念,能用位似的性质将一个图形放大或缩小.4.掌握用坐标表示图形的位置与变换,在给定的坐标系中,会根据坐标描出点的位置或由点的位置写出它的坐标,灵活运用不同方式确定物体的位置.【知识网络】应用:解决实际问题3.面积的比等于相似比的平方2.对应边、对应中线、对应角平分线、对应高线、周长的比等于相似比1.对应角相等4.三边对应成比例3.两边对应成比例且夹角相等2.两角对应相等1.定义图形的运动与坐标用坐标来确定位置位似性质识别方法相似多边形的特征概念图形与坐标相似三角形相似的图形图形的相似【考点梳理】考点一、比例线段1. 比例线段的相关概念如果选用同一长度单位量得两条线段a,b的长度分别为m,n,那么就说这两条线段的比是nmba,或写成a:b=m:n.在两条线段的比a:b中,a叫做比的前项,b叫做比的后项.在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段.若四条a,b,c,d满足或a:b=c:d,那么a,b,c,d叫做组成比例的项,线段a,d叫做比例外项,线段b,c叫做比例内项.如果作为比例内项的是两条相同的线段,即cbba或a:b=b:c,那么线段b叫做线段a,c的比例中项.2、比例的性质(1)基本性质:①a:b=c:dad=bc ②a:b=b:cacb2.(2)更比性质(交换比例的内项或外项)dbca(交换内项)dcbaacbd(交换外项)1 abcd(同时交换内项和外项)(3)反比性质(交换比的前项、后项):cdabdcba(4)合比性质:ddcbbadcba(5)等比性质:banfdbmecanfdbnmfedcba)0(3、黄金分割把线段AB分成两条线段AC,BC(AC>BC),并且使AC是AB和BC的比例中项,叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点,其中AC=215AB0.618AB.考点二、相似图形1.相似图形:我们把形状相同的图形叫做相似图形. 也就是说:两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到的.(全等是特殊的相似图形).2.相似多边形:对应角相等,对应边的比相等的两个多边形叫做相似多边形.3.相似多边形的性质:相似多边形的对应角相等,对应边成的比相等.相似多边形的周长的比等于相似比,相似多边形的面积的比等于相似比的平方.4.相似三角形的定义:形状相同的三角形是相似三角形.5.相似三角形的性质:(1)相似三角形的对应角相等,对应边的比相等.(2)相似三角形对应边上的高的比相等,对应边上的中线的比相等,对应角的角平分线的比相等,都等于相似比.(3)相似三角形的周长的比等于相似比,面积的比等于相似比的平方.【要点诠释】结合两个图形相似,得出对应角相等,对应边的比相等,这样可以由题中已知条件求得其它角的度数和线段的长.对于复杂的图形,采用将部分需要的图形(或基本图形)抽出来的办法处理.6.相似三角形的判定:(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似;(2)如果两个三角形的三组对应边的比相等,那么这两个三角形相似;(3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;(4)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.(5)如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和一条直角边的比对应相等,那么这两个三角形相似.考点三、位似图形1.位似图形的定义:两个多边形不仅相似,而且对应顶点的连线相交于一点,不经过交点的对应边互相平行,像这样的两个图形叫做位似图形,这个点叫位似中心.2.位似图形的分类:(1)外位似:位似中心在连接两个对应点的线段之外.(2)内位似:位似中心在连接两个对应点的线段上.3.位似图形的性质2位似图形的对应点和位似中心在同一条直线上;位似图形的对应点到位似中心的距离之比等于相似比;位似图形中不经过位似中心的对应线段平行.【要点诠释】位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.4.作位似图形的步骤第一步:在原图上找若干个关键点,并任取一点作为位似中心;第二步:作位似中心与各关键点连线;第三步:在连线上取关键点的对应点,使之满足放缩比例;第四步:顺次连接截取点.【
上传时间:2023-04-30 页数:14
267人已阅读
(5星级)
二次函数y=ax2+bx+c(a≠0)的图象与性质—巩固练习(提高)【巩固练习】一、选择题1. 定义[,,]abc为函数2yaxbxc的特征数,下面给出特征数为[2,1,1]mmm的函数的一些结论:①当3m时,函数图象的顶点坐标是18,33;②当0m时,函数图象截x轴所得线段的长度大于32;③当0m时,函数在14x时,y随x的增大而减小;④当m≠0时,函数图象经过同一个点.其中正确的结论有( ).A.①②③④ B.①②④ C.①③④ D.②④2.(2015•南昌)已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴().A.只能是x=1﹣ B.可能是y轴C.在y轴右侧且在直线x=2的左侧 D.在y轴左侧且在直线x=2﹣的右侧3.(2016•毕节市)一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.4.已知二次函数2yaxbxc中,其函数y与自变量x之间的部分对应值如下表所示:x……01234……y……41014……点A(x1,y1),B(x2,y2)在函数的图象上,则当1<x1<2,3<x2<4时,y1与y2的大小关系正确的是()A.y1>y2B.y1<y2C.y1≥y2D.y1≤y25.如图所示,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是()A.m=n,k>hB.m=n,k<hC.m>n,k=hD.m<n,k=h第5题 第6题6.已知二次函数的图象(0≤x≤3)如图所示,关于该函数在自变量取值范围内,下列说法正确的是( )A.有最小值0,有最大值3 B.有最小值-1,有最大值0C.有最小值-1,有最大值3D.有最小值-1,无最大值二、填空题7.(2016•金山区二模)如果抛物线y=ax2+2a2x1﹣的对称轴是直线x=1﹣,那么实数a=.18.如图所示,是二次函数2(0)yaxbxca在平面直角坐标系中的图象.根据图形判断①c>0;②a+b+c<0;③2a-b<0;④284baac中正确的是________(填写序号).9.已知点(1,4)、(3,4)在二次函数232yxkxk的图象上,则此二次函数图象的顶点坐标是_________.10.抛物线y=x2+bx+c与x轴的正半轴交于A,B两点,与y轴交于C点,且线段AB的长为1,△ABC的面积为1,则b的值是_____.11.抛物线y=x2+kx-2k通过一个定点,这个定点的坐标是_ ____.12.(2015•长春)如图,在平面直角坐标系中,点A在抛物线y=x22x+2﹣上运动.过点A作ACx⊥轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为.三、解答题13.(2015•北京)在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x1﹣交于点A,点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.(1)求点A,B的坐标;(2)求抛物线C1的表达式及顶点坐标;(3)若抛物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.14.已知二次函数y=-x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).2(1)求出b,c的值,并写出此二次函数的解析式;(2)根据图象,直接写出函数值y为正数时,自变量x的取值范围;(3)当≤x≤2时,求y的最大值.15.如图,抛物线经过直线与坐标轴的两个交点,此抛物线与轴的另一个交点为,抛物线的顶点为.(1)求此抛物线的解析式;(2)点为抛物线上的一个动点,求使的点的坐标. 3【答案与解析】一、选择题1.【答案】B;【解析】理解题意是前提,当3m时,6a,4b,2c.所以2218642633yxxx,所以函数图象的顶点坐标是18,33,①正确排除选项D;因为当0m时,对称轴11244bmxam,所以③错误.排除选项A、C.所以正确选项为B. 2.【答案】D;【解析】∵抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,∴点(﹣2,0)关于对称轴的对称点横坐标x2满足:﹣2<x2<2,∴﹣2<<0,∴抛物线的对称轴在y轴左侧且在直线x=﹣2的
上传时间:2023-04-30 页数:7
267人已阅读
(5星级)
弧、弦、圆心角、圆周角--知识讲解(基础) 【学习目标】1.了解圆心角、圆周角的概念;2.理解圆周角定理及其推论,能灵活运用圆周角的定理及其推理解决有关问题;3.掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它两组量对应相等,及其它们在解题中的应用.【要点梳理】要点一、弧、弦、圆心角的关系1.圆心角定义如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.2.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意定理中不能忽视同圆或等圆这一前提.要点二、圆周角1.圆周角定义: 像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角. 2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.4.圆内接四边形:1(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形. (2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).5.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。 *如果它们中间有一组量不相等,那么其它各组量也分别不等。【典型例题】类型一、圆心角、弧、弦之间的关系及应用1.如图,在⊙O中,,求∠A的度数.【答案与解析】 .【总结升华】在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的圆周角相等,所对的 弦也相等.举一反三:【变式】如图所示,中弦AB=CD,求证:AD=BC.2 【答案】证法1:∵AB=CD,∴(在同圆中,相等的弦所对的弧(同为优弧或同为劣弧)也相等) ∴ ∴AD=BC(在同圆中,相等的弧所对的弦也相等)证法2:如图,连接OA,OD,OB,OC, ∵AB=CD,∴(在同圆中,相等的弦所对的圆心角相等) ∴ ∴AD=BC(在同圆中,相等的圆心角所对的弦也相等)类型二、圆周角定理及应用2.观察下图中角的顶点与两边有何特征? 指出哪些角是圆周角?【答案与解析】(a)∠1顶点在⊙O内,两边与圆相交,所以∠1不是圆周角; (b)∠2顶点在圆外,两边与圆相交,所以∠2不是圆周角;(c)图中∠3、∠4、∠BAD的顶点在圆周上,两边均与圆相交,所以∠3、∠4、∠BAD是圆周角.(d)∠5顶点在圆上,一边与圆相交,另一边与圆不相交,所以∠5不是圆周角;(e)∠6顶点在圆上,两边与圆均不相交,由圆周角的定义知∠6不是圆周角.【总结升华】 紧扣定义,抓住二要素,正确识别圆周角.356996 经典例题6-73.(2015•台州)如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.3(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=2∠.【答案与解析】 (1)解:∵BC=DC,∴∠CBD=CDB=39°∠,∵∠BAC=CDB=39°∠,∠CAD=CBD=39°∠,∴∠BAD=BAC+CAD=39°+39°=78°∠∠;(2)证明:∵EC=BC,∴∠CEB=CBE∠,而∠CEB=2+BAE∠∠,∠CBE=1+CBD∠∠,∴∠2+BAE=1+CBD∠∠∠,∵∠BAE=CBD∠,∴∠1=2∠.【总结升华】本题主要考查了圆周角定理和等腰三角形的性质,熟悉圆的有关性质是解决问题的关键.4.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?【答案与解析】BD=CD.理由是:如图,连接AD ∵AB是⊙O的直径 ∴∠ADB=90°即AD⊥BC 又∵AC=AB,∴BD=CD.【总结升华】BD=CD,因为AB=AC,所以这个△ABC是等腰三角形,要证明D是BC的中点,
上传时间:2023-04-30 页数:5
267人已阅读
(5星级)
解直角三角形及其应用--巩固练习【巩固练习】一、选择题1.在△ABC中,∠C=90°,,则tan B=().A. B.C.D.2.(2016•绍兴)如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A.B.C.D.3.河堤、横断面如图所示,堤高BC=5米,迎水坡AB的坡比是1:(坡比是坡面的铅直高度BC与水平宽度AC之比),则AC的长是().A.米B.10米C.15米 D.米4.如图所示,正方形ABCD中,对角线AC、BD交于点O,点M、N分别为OB、OC的中点,则cos∠OMN的值为(). A.B. C. D.1 第3题第4题第5题5.如图所示,某游乐场一山顶滑梯的高为h,滑梯的坡角为α,那么滑梯长为 ()A.B.C.D.6.如图所示,在△ABC中,∠C=90°,AC=16 cm,AB的垂直平分线MN交AC于D,连接BD,若,则BD的长是().A.4 cm B.6 cmC.8 cm D.10 cm7.如图所示,一艘轮船由海平面上A地出发向南偏西40°的方向行驶40海里到达B地,再由B地向北偏西的方向行驶40海里到达C地,则A、C两地相距(). A.30海里 B.40海里 C.50海里 D.60海里1第6题第7题第8题8.如图所示,为了测量河的宽度,王芳同学在河岸边相距200 m的M和N两点分别测定对岸一棵树P的位置,P在M的正北方向,在N的北偏西30°的方向,则河的宽度是().A.mB.m C.m D.100m二、填空题9.(2015•揭西县一模)在菱形ABCD中,DEAB⊥,,BE=2,则tanDBE∠的值是.10.如图所示,等边三角形ABC中,D、E分别为AB、BC边上的点,AD=BE,AE与CD交于点F,AG⊥CD于点G,则的值为________. 11.如图所示,一艘海轮位于灯塔P的东北方向,距离灯塔海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则海轮行驶的路程AB为________海里(结果保留根号).12.如图所示,直角梯形ABCD中,AB⊥BC,AD∥BC,BC>AD,AD=2,AB=4,点E在AB上,将△CBE沿CE翻折,使B点与D点重合,则∠BCE的正切值是________.13.如图所示.线段AB、DC分别表示甲、乙两座建筑物的高.AB⊥BC,DC⊥BC,两建筑物间距离BC=30米,若甲建筑物高AB=28米,在A点测得D点的仰角α=45°,则乙建筑物高DC=____米.2第12题 第13题 第14题14.在一次夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了200m到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图所示),那么,由此可知,B、C两地相距________m.三、解答题15.如图所示,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).16. (2016•包头)如图,已知四边形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延长线与AD的延长线交于点E.(1)若∠A=60°,求BC的长;(2)若sinA=,求AD的长.(注意:本题中的计算过程和结果均保留根号)17.(2015•资阳)北京时间2015年04月25日14时11分,尼泊尔发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢
上传时间:2023-04-30 页数:7
267人已阅读
(5星级)
与三角形有关的线段(提高)巩固练习【巩固练习】一、选择题1.如果三条线段的比是:①1:3:4;②1:2:3;③1:4:6;④3:3:6;⑤6:6:10;⑥3:4:5,其中可构成三角形的有( )A.1个B.2个C.3个D.4个2.一个三角形的周长是偶数,其中的两条边分别为5和9,则满足上述条件的三角形个数为()A.2个B.4个C.6个D.8个3.(2016春•成安县期末)下列说法正确的是()①三角形的三条中线都在三角形内部;②三角形的三条角平分线都在三角形内部;③三角形三条高都在三角形的内部.A.①②③B.①②C.②③D.①③4.如图,AC⊥BC,CD⊥AB,DE⊥BC,则下列说法中错误的是()A.在△ABC中,AC是BC边上的高B.在△BCD中,DE是BC边上的高C.在△ABE中,DE是BE边上的高D.在△ACD中,AD是CD边上的高5.(2015春•南长区期中)有4根小木棒,长度分别为3cm、5cm、7cm、9cm任意取其中的3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为() A.2个 B.3个C.4个 D.5个6.给出下列图形:其中具有稳定性的是( )A.①B.③C.②③D.②③④7.如图所示为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为214平方公分,则此方格纸的面积为多少平方公分? ( )A.11B.12C.13D.1418.王师傅用4根木条钉成一个四边形木架.如图所示,要使这个木架不变形,他至少要再钉上几根木条?( )A.0根B.1根C.2根D.3根二、填空题9.(2014春•渝北区期末)对面积为1的△ABC进行以下操作:分别延长AB、BC、CA至点A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1(如图所示),记其面积为S1.现再分别延长A1B1、B1C1、C1A1至点A2、B2、C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2、B2、C2,得到△A2B2C2,记其面积为S2,则S2=.10.三角形的两边长分别为5 cm和12 cm,第三边与前两边中的一边相等,则三角形的周长为________.11.(2016春•丹阳市校级期中)如图,AD⊥BC于D,那么图中以AD为高的三角形有 个.12.在数学活动中,小明为了求23411112222…12n的值(结果用n表示),设计了如图所示的几何图形.请你利用这个几何图形求23411112222…12n=________.13.请你观察下图的变化过程,说明四边形的四条边一定时,其面积________确定.(填2能或不能)14.如图,是用四根木棒搭成的平行四边形框架,AB=8cm,AD=6cm,使AB固定,转动AD,当∠DAB=_____时,ABCD的面积最大,最大值是________.三、解答题15.草原上有4口油井,位于四边形ABCD的四个顶点上,如图所示,如果现在要建一个维修站H,试问H建在何处,才能使它到4口油井的距离之和HA+HB+HC+HD为最小,说明理由.16.取一张正方形纸片,把它裁成两个等腰直角三角形,取出其中一张如图①,再沿着直角边上的中线AD按图②所示折叠,则AB与DC相交于点G.试问:△AGC和△BGD的面积哪个大?为什么?17. 已知AD是△ABC的高,∠BAD=70°,∠CAD=20°,(1)求∠BAC的度数.(2)△ABC是什么三角形.18. (2014春•西城区期末)阅读下列材料:某同学遇到这样一个问题:如图1,在△ABC中,AB=AC,BD是△ABC的高.P是BC边上一点,PM,PN分别与直线AB,AC垂直,垂足分别为点M,N.求证:BD=PM+PN.他发现,连接AP,有S△ABC=S△ABP+S△ACP,即AC•BD=AB•PM+AC•PN.由AB=AC,可得BD=PM+PN.他又画出了当点P在CB的延长线上,且上面问题中其他条件不变时的图形,如图2所示.他猜想此时BD,PM,PN之间的数量关系是:BD=PNPM﹣.3请回答:(1)请补全以下该同学证明猜想的过程;证明:连接AP.∵S△ABC=S△APC﹣,∴AC•BD=AC• ﹣AB•.∵AB=AC,∴BD=PNPM﹣.(2)参考该同学思考问题的方法,解决下列问题:在△ABC
上传时间:2023-04-30 页数:7
267人已阅读
(5星级)
【巩固练习】一、选择题1.(2016•益阳)的相反数是()A.2016B.﹣2016 C.D.2.(2015•吉林)若等式0□1=﹣1成立,则□内的运算符号为() A.+B.﹣C.×D.÷3. 在-(-2),-|-7|,-|+1|,|-)511(-|32,中,负数的个数是 () A.1个 B.2个 C.3个 D.4个4.据有关资料显示,2011年遵义市全年财政总收入202亿元,将202亿用科学记数法可表示( )A.2.02×210人 B.202×810人 C.2.02×910人D.2.02×1010人5.若-1<a<0,则a,2a,a1从小到大排列正确的是( )A.a2<a<a1 B.a <a1< a2C.a1<a< a2 D.a < a2 <a16.在数轴上距2.5有3.5个单位长度的点所表示的数是( )A.6 B.-6 C.-1D.-1或67.a,b两数在数轴上的位置如图,则下列正确的是() A. a+b>0B. ab>0C.ba>0D.a-b>08.已知有理数a,b在数轴上对应的两点分别是A,B.请你将具体数值代入a,b,充分实验验证:对于任意有理数a,b,计算A, B两点之间的距离正确的公式一定是( )A.abB.||||abC.||||ab D.||ab二、 填空题9.(2015•东阳市模拟)一运动员某次跳水的最高点离跳板2m,记作+2m,则水面离跳板3m可以记作 m.10.水池中的水位在某天八个不同时刻测得记录为:(规定向上为正,向下为负,单位:厘米)+3,0,-1,+5,-4,+2,-3,-2,那么这里0的含义是___________.11.德国科学家贝塞尔推算出天鹅座第61颗暗星距离地球102 000 000 000 000千米,用科学记数法表示出暗星到地球的距离为________千米,精确到千亿位为 千米.12.7x,则______x; 7x,则______x.13.已知实数a , 在数轴上如下图所示,则|1|a= . 114.若|a-2|+|b+3|=0,则3a+2b=.15.221=.16.(2016春•江苏校级期末)观察下列各式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…你从中发现底数为3的幂的个位数有什么规律吗?根据你发现的规律回答:32016的个位数字是 .三、 解答题17.计算: (1)222172(3)(6)3(2)4211(10.5)[2(3)]3(3)21-49.5+10.2-2-3.5+19(4)32323335191432125194325218.(2015春•万州区期末)某服装店以每件82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结来如表所示:售出件数76782 售价(元)+5+1 0﹣2﹣5请你求出该服装店在售完这30套保暖内衣后,共赚了多少钱?19.某地的气象观测资料表明,高度每增加1km,气温大约下降6℃,若该地地面温度为18℃,高空某处气温为-48℃,求此处的高度.20.先观察下列各式:11111434;111147347;11117103710;…;1111(3)33nnnn,根据以上观察,计算:1111447710…120052008的值.【答案与解析】一、选择题1.【答案】C【解析】解:∵﹣与只有符号不同,2∴﹣的相反数是.故选:C.2.【答案】B.3.【答案】C【解析】负数有三个,分别是:-|-7|,-|+1|,)511(-4.【答案】A5.【答案】C【解析】由-1<a<0可知2a为正数,而其它两数均为负数,且| a |<a1,所以a>a1,所以a1<a< a2.6.【答案】D【解析】2.5+3.5=6,2.5-3.5=-17.【答案】D【解析】由图可知,a
上传时间:2023-04-30 页数:4
267人已阅读
(5星级)
《整式的加减》全章复习与巩固(基础)知识讲解【学习目标】1.理解并掌握单项式与多项式的相关概念;2.理解整式加减的基础是去括号和合并同类项,并会用整式的加减运算法则,熟练进行整式的加减运算、求值;3.深刻体会本章体现的主要的数学思想-整体思想.【知识网络】【要点梳理】要点一、整式的相关概念 1.单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式. 要点诠释:(1)单项式的系数是指单项式中的数字因数.(2)单项式的次数是指单项式中所有字母的指数和. 2.多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.要点诠释:(1)在多项式中,不含字母的项叫做常数项.(2)多项式中次数最高的项的次数,就是这个多项式的次数.(3)多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式.3. 多项式的降幂与升幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列.另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列.要点诠释:(1)利用加法交换律重新排列时,各项应连同它的符号一起移动位置;(2)含有多个字母时,只按给定的字母进行降幂或升幂排列.4.整式:单项式和多项式统称为整式.要点二、整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.要点诠释:辨别同类项要把准两相同,两无关:(1)两相同是指:①所含字母相同;②相同字母的指数相同;(2)两无关是指:①与系数无关;②与字母的排列顺序无关.2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.要点诠释:合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持1不变.3.去括号法则:括号前面是+,把括号和它前面的+去掉后,原括号里各项的符号都不改变;括号前面是-,把括号和它前面的-号去掉后,原括号里各项的符号都要改变.4.添括号法则:添括号后,括号前面是+,括号内各项的符号都不改变;添括号后,括号前面是-,括号内各项的符号都要改变.5.整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项.【典型例题】类型一、整式的相关概念1.指出下列各式中的整式、单项式和多项式,是单项式的请指出系数和次数,是多项式的请说出是几次几项式.(1)3a(2)5(3)2ba(4)2xy(5)3xy(6)x(7)5mn(8)1+a%(9)1()2abh【答案与解析】解:整式:(1)、(2)、(4)、(5)、(6)、(7)、(8)、(9)单项式:(2)、(5)、(6),其中:5的系数是5,次数是0;3xy的系数是3,次数是2;x的系数是1,次数是1.多项式:(1)、(4)、(7)、(8)、(9),其中:3a是一次二项式;2xy是一次二项式;5mn是一次二项式;1+a%是一次二项式;1()2abh是二次二项式。【总结升华】①分母中出现字母的式子不是整式,故2ba不是整式;②π是常数而不是字母,故x是整式,也是单项式;③(7)、(9)表示的是加、减关系而不是乘积关系,而单项式中不能有加减.如5mn其实质为55mn,1()2abh其实质为1122ahbh.举一反三:【变式1】(1)3xy的次数与系数的和是________;(2)已知单项式26xy的系数是等于单项式52mxy的次数,则m=________;(3)若nmab是关于a、b的一个五次单项式,且系数为9,则-m+n=________.【答案】(1)3(2)1(3)-5【变式2】多项式432231yyyy是________次________项式,常数项是________,2三次项是________.【答案】四,五, 1 , 3y【变式3】把多项式321325xxx按x的降幂排列是________.【答案】322531xxx类型二、同类项及合并同类项2.(2015•遵义)如果单项式﹣xyb+1与xa﹣2y3是同类项,那么(a﹣b)2015= .【答案】1.【解析】解:由同类项的定义可知a﹣2=1,解得a=3,b+1=3,解得b=2,所以(a﹣b)2015=1.【总结升华】考查了同类项,要求代数式的值,首先要求出代数式中的字母的值,然后代入求解即可.举一反三:【变式】若47axy与579bxy是同类项,则a=________,b=________.【答案】 5 , 4类型三、去(添)括号3. 计算 22232(12)[5(436)
上传时间:2023-04-30 页数:6
267人已阅读
(5星级)
2021年广西贺州市中考数学试卷一、选择题:(本大题共12小题,每小题3分,共36分:给出的四个选项中,只有一项是符合题目要求的在试卷上作答无效)1. 2的倒数是()A. B. C. D. 22. 如图,下列两个角是同旁内角的是()A. 与B. 与C. 与D. 与3. 下列事件中属于必然事件的是()A. 任意画一个三角形,其内角和是180°B. 打开电视机,正在播放新闻联播C. 随机买一张电影票,座位号是奇数号D. 掷一枚质地均匀的硬币,正面朝上4. 在平面直角坐标系中,点关于原点对称的点的坐标是()A. (-3,2)B. (3,-2)C. (-2,-3)D. (-3,-2)5. 下列四个几何体中,左视图为圆的是()A. B. C. D. 6. 直线()过点,,则关于的方程的解为()A. B. C. D. 7. 多项式因式分解为()A. B. C. D. 8. 若关于的分式方程有增根,则的值为()A. 2B. 3C. 4D. 59. 如图,在边长为2的等边中,是边上的中点,以点为圆心,为半径作圆与,分别交于,两点,则图中阴影部分的面积为()A. B. C. D. 10. 如图,在中,,,点在上,,以为半径的与相切于点,交于点,则的长为()A. B. C. D. 111. 如图,已知抛物线与直线交于,两点,则关于的不等式的解集是()A. 或B. 或C. D. 12. 如,我们叫集合,其中1,2,叫做集合的元素.集合中的元素具有确定性(如必然存在),互异性(如,),无序性(即改变元素的顺序,集合不变).若集合,我们说.已知集合,集合,若,则的值是()A. -1B. 0C. 1D. 2二、填空题:(本大题共6小题,每小题3分,共18分.请把答案填在答题卡对应的位置上,在试卷上作答无效)13. 要使二次根式在实数范围内有意义,的取值范围是________.14. 数据0.000000407用科学记数法表示为________.15. 盒子里有4张形状、大小、质地完全相同的卡片,上面分别标着数字2,3,4,5,从中随机抽出1张后不放回,再随机抽出1张,则两次抽出的卡片上的数字之和为偶数的概率是________.16. 如图,在矩形中,,分别为,的中点,以为斜边作,,连接,.若,则________.17. 如图,一次函数与坐标轴分别交于,两点,点,分别是线段,上的点,且,,则点的标为________.18. 如图.在边长为6的正方形中,点,分别在,上,且,,垂足为,是对角线的中点,连接、则的长为________.三、解答题:(本大题共8题、共66分,解答应写出文字说明、证明过程演算步骤.在试卷上作答无效)19. 计算:.20. 解不等式组:.21. 如图,某大学农学院的学生为了解试验田杂交水稻秧苗的长势,从中随机抽取样本对苗高进行了测量,根据统计结果(数据四舍五入取整),绘制统计图.(1)本次抽取的样本水稻秧苗为________株;(2)求出样本中苗高为的秧苗的株数,并完成折线统计图;(3)根据统计数据,若苗高大于或等于视为优良秧苗,请你估算该试验田90000株水稻秧苗中达到优良等级的株数.22. 如图,一艘轮船离开港沿着东北方向直线航行海里到达处,然后改变航向,向正东方向航行20海里到达处,求的距离.23. 为了提倡节约用水,某市制定了两种收费方式:当每户每月用水量不超过时,按一级单价收费;当每户每月用水量超过时,超过部分按二级单价收费.已知李阿姨家五月份用水量为,缴纳水费32元.七月份因孩子放假在家,用水量为,缴纳水费51.4元.(1)问该市一级水费,二级大费的单价分别是多少?(2)某户某月缴纳水费为64.4元时,用水量为多少?24. 如图,在四边形中,,,,交于点,过点作,垂足为,且.(1)求证:四边形是菱形;(2)若,求的面积.25. 如图,在中,,是上的一点,以为直径的与相切于点,连接,.(1)求证:平分;(2)若,求的值.26. 如图,抛物线与轴交于、两点,且,对称轴为直线.(1)求该抛物线的函数达式;(2)直线过点且在第一象限与抛物线交于点.当时,求点的坐标;(3)点在抛物线上与点关于对称轴对称,点是抛物线上一动点,令,当,时,求面积的最大值(可含表示).
上传时间:2023-05-08 页数:6
266人已阅读
(5星级)
湖南省常德市2021年中考数学试卷一、选择题1. 4的倒数是()A. B. 2C. 1D. 2. 若,下列不等式不一定成立的是()A. B. C. D. 3. 一个多边形的内角和是1800°,则这个多边形是()边形.A. 9B. 10C. 11D. 124. 下列计算正确的是()A. B. C. D. 5. 舒青是一名观鸟爱好者,他想要用折线统计图来反映中华秋沙鸭每年秋季到当地避寒越冬的数量变化情况,以下是排乱的统计步骤:①从折线统计图中分析出中华秋沙鸭每年来当地避寒越冬的变化趋势;②从当地自然保护区管理部门收集中华秋沙鸭每年来当地避寒越冬的数量记录;③按统计表的数据绘制折线统计图;④整理中华秋沙鸭每年来当地避寒越冬的数量并制作统计表.正确统计步骤的顺序是()A. ②→③→①→④B. ③→④→①→②C. ①→②→④→③D. ②→④→③→①6. 计算:()A. 0B. 1C. 2D. 7. 如图,已知F、E分别是正方形的边与的中点,与交于P.则下列结论成立的是()A. B. C. D. 8. 阅读理解:如果一个正整数m能表示为两个正整数a,b的平方和,即,那么称m为广义勾股数.则下面的四个结论:①7不是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数.依次正确的是()A. ②④B. ①②④C. ①②D. ①④二、填空题9. 求不等式的解集_________.10. 今年5月11日,国家统计局公布了第七次全国人口普查的结果,我国现有人口141178万人.用科学计数法表示此数为___________人.11. 在某次体育测试中,甲、乙两班成绩的平均数、中位数、方差如下表所示,规定学生个人成绩大于90分为优秀,则甲、乙两班中优秀人数更多的是__________班.人数平均数中位数方差甲班45829119.3乙班4587895.812. 分式方程的解为__________.13. 如图,四边形ABCD是⊙O的内接四边形,若∠BOD=80°,则∠BCD的度数是_____.14. 如图.在中,,平分,于E,若,则的长为________.15. 刘凯有蓝、红、绿、黑四种颜色的弹珠,总数不超过50个,其中为红珠,为绿珠,有8个黑珠.问刘凯的蓝珠最多有_________个.16. 如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有个正方形,所有线段的和为4,第二个图形有个小正方形,所有线段的和为12,第三个图形有个小正方形,所有线段的和为24,按此规律,则第n个网格所有线段的和为____________.(用含n的代数式表示)三、解答题17. 计算:.18. 解方程:19. 化简:20. 如图,在中,.轴,O为坐标原点,A的坐标为,反比例函数的图象的一支过A点,反比例函数的图象的一支过B点,过A作轴于H,若的面积为.(1)求n的值;(2)求反比例函数的解析式.21. 某汽车贸易公司销售A、B两种型号的新能源汽车,A型车进货价格为每台12万元,B型车进货价格为每台15万元,该公司销售2台A型车和5台B型车,可获利3.1万元,销售1台A型车和2台B型车,可获利1.3万元.(1)求销售一台A型、一台B型新能源汽车的利润各是多少万元?(2)该公司准备用不超过300万元资金,采购A、B两种新能源汽车共22台,问最少需要采购A型新能源汽车多少台?22. 今年是建党100周年,学校新装了国旗旗杆(如图所示),星期一该校全体学生在国旗前举行了升旗仪式.仪式结束后,站在国旗正前方的小明在A处测得国旗D处的仰角为,站在同一队列B处的小刚测得国旗C处的仰角为,已知小明目高米,距旗杆的距离为15.8米,小刚目高米,距小明24.2米,求国旗的宽度是多少米?(最后结果保留一位小数)(参考数据:)23. 我市华恒小区居民在一针疫苗一份心,预防接种尽责任的号召下,积极联系社区医院进行新冠疫苗接种.为了解接种进度,该小区管理人员对小区居民进行了抽样调查,按接种情况可分如下四类:A类——接种了只需要注射一针的疫苗:B类——接种了需要注射二针,且二针之间要间隔一定时间的疫苗;C类——接种了要注射三针,且每二针之间要间隔一定时间的疫苗;D类——还没有接种,图1与图2是根据此次调查得到的统计图(不完整).请根据统计图回答下列问题.(1)此次抽样调查的人数是多少人?(2)接种B类疫苗的人数的百分比是多少?接种C类疫苗的人数是多少人?(3)请估计该小区所居住的18000名居民中有多少人进行了新冠疫苗接种.(4)为了继续宣传新冠疫苗接种的重要性,小区管理部门准备在已经接种疫苗的居民中征集2名志愿宣传者,现有3男2女共5名居民报名,要从这5人中随机挑选2人,求恰好抽到
上传时间:2023-05-08 页数:7
266人已阅读
(5星级)
广安市2021年初中学业水平考试试题数学一、选择题(每小题只有一个选项符合题意,请将所选选项填涂在答题卡相应位置上.本大题共10个小题,每小题3分,共30分)1. 16的平方根是()A. B. 4C. D. 82. 下列运算中,正确的是()A. B. C. D. 3. 到2021年6月3日,我国31个省(自治区、直辖市)和新疆生产建设兵团,累计接种新冠疫苗约7.05亿剂次,请将7.05亿用科学计数法表示()A. B. C. D. 4. 下列几何体的主视图既是轴对称图形又是中心对称图形的是()A. B. C. D. 5. 关于的一元二次方程有实数根,则的取值范围是()A. 且B. C. 且D. 6. 下列说法正确的是()A. 为了了解全国中学生的心理健康情况,选择全面调查B. 在一组数据7,6,5,6,6,4,8中,众数和中位数都是6C. 若是实数,则是必然事件D. 若甲组数据的方差,乙组数据的方差,则乙组数据比甲组数据稳定7. 若点,,都在反比例函数的图象上,则,,的大小关系是()A. B. C. D. 8. 如图,将绕点逆时针旋转得到,若且于点,则的度数为()A. B. C. D. 9. 如图,公园内有一个半径为18米的圆形草坪,从地走到地有观赏路(劣弧)和便民路(线段).已知、是圆上的点,为圆心,,小强从走到,走便民路比走观赏路少走()米.A. B. C. D. 10. 二次函数的图象如图所示,有下列结论:①,②,③,④,正确的有()A. 1个B. 2个C. 3个D. 4个二、填空题(请把最简答案填写在答题卡相应位置.本大题共6个小题,每小题3分,共18分)11. 在函数中,自变量x的取值范围是___.12. 若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.13. 一个三角形的两边长分别为3和5,第三边长是方程x2-6x+8=0的根,则三角形的周长为_____.14. 若、满足,则代数式的值为______.15. 如图,将三角形纸片折叠,使点、都与点重合,折痕分别为、.已知,,,则的长为_______.16. 如图,在平面直角坐标系中,轴,垂足为,将绕点逆时针旋转到的位置,使点的对应点落在直线上,再将绕点逆时针旋转到的位置,使点的对应点也落在直线……上,以此进行下去若点的坐标为,则点的纵坐标为______.三、解答题(本大题共4个小题,第17小题5分,第18、19、20小题各6分,共23分)17. 计算:.18. 先化简:,再从-1,0,1,2中选择一个适合的数代入求值.19. 如图,四边形是菱形,点、分别在边、的延长线上,且.连接、.求证:.20. 如图,一次函数的图象与反比例函数的图象交于,两点.(1)求一次函数和反比例函数的解析式;(2)点在轴上,且满足的面积等于4,请直接写出点的坐标.四、实践应用题(本大题共4个小题,第21小题6分,第22、23、24小题各8分,共30分)21. 在中国共产党成立100周年之际,我市某中学开展党史学习教育活动.为了了解学生学习情况,在七年级随机抽取部分学生进行测试,并依据成绩(百分制)绘制出以下两幅不完整的统计图.请根据图中信息回答下列问题:(1)本次抽取调查的学生共有______人,扇形统计图中表示等级的扇形圆心角度数为_______.(2)等级中有2名男生,2名女生.从中随机抽取2人参加学校组织的知识问答竞赛,请用画树状图或列表的方法,求恰好抽到一男一女的概率.22. 国庆节前,某超市为了满足人们的购物需求,计划购进甲、乙两种水果进行销售.经了解,甲种水果和乙种水果的进价与售价如下表所示:水果单价甲乙进价(元/千克)售价(元/千克)2025已知用1200元购进甲种水果的重量与用1500元购进乙种水果的重量相同.(1)求的值;(2)若超市购进这两种水果共100千克,其中甲种水果的重量不低于乙种水果重量的3倍,则超市应如何进货才能获得最大利润,最大利润是多少?23. 如图①、图②分别是某种型号跑步机的实物图与示意图.已知跑步机手柄与地面平行,踏板长为,与地面的夹角,支架长为,,求跑步机手柄所在直线与地面之间的距离.(结果精确到.参考数据:,,,)24. 下图是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点为格点,线段的端点都在格点上.要求以为边画一个平行四边形,且另外两个顶点在格点上.请在下面的网格图中画出4种不同的设计图形.五、推理论证题25. 如图,是的直径,点在上,的平分线交于点,过点作,交的延长线于点,延长、相交于点.(1)求证:是的切线;(2)若的半径为5,,求的长.六、拓展探索题26. 如图,在平面直角坐标系中,抛物线的图象与坐标轴相交于、、三点,其中
上传时间:2023-05-08 页数:8
266人已阅读
(5星级)
《单项式乘以单项式》典型例题例1计算。例2 计算:(1)(2)例3 计算.例4 计算:(1);(2);例5 计算题:(1)(2)例6 化简:(1);(2)。参考答案例1分析:积的系数是各单项式系数的积:;相同字母相乘,依据同底数幂的乘法性质,得:;作为只在一个单项式里含有的字母,连同它的指数作为积的一个因式,这个因式为。最后计算结果为。解:。说明:凡是在单项式里出现过的字母,在其结果里也应全都有,不能漏掉。例2 分析:第(1)小题只要按单项式乘法法则去做即可;第(2)小题应把与分别看作一个整体,那么此题也是单项式乘法,要按照单项式乘法及法则计算。解:(1)(2)。说明:∵与互为相反数,∴。例3 解:原式说明:单项式相乘是以幂的运算性质为基础的。凡有幂的乘方或积的乘方时,可先计算,最后转化为数的乘法及同底数幂的乘法。若单项式系数中既有分数,又有小数,则一般化为分数。例4 分析:题中含有乘方、乘法和减法运算。有理数的运算性质对于整式运算仍然适用。解:(1)原式(2)原式 说明:要按运算顺序进行计算,先乘方,后乘除,最后再加减。例5 分析:第(1)题是三个单项式相乘,按照单项式乘法法则进行计算第(2)题是一个单项式与两个积的乘方的积,应先算积的乘方,再算三个单项式相乘。解:(1)原式 (2)原式例6 分析:第(1)小题应把与分别看作一个整体,那么此题也是单项式乘法,要按照单项式乘法法则计算。第(2)小题只需按有理数的运算法则计算。解:(1)(2) 说明:单项式的乘法要依据单项式乘法法则,在计算时要综合运用有关幂的性质,尤其需要注意,。
上传时间:2023-04-30 页数:4
266人已阅读
(5星级)
中考冲刺:几何综合问题—巩固练习(提高)【巩固练习】一、选择题1.(2015春•江阴市校级期中)在平面直角坐标系中,直角梯形AOBC的位置如图所示,∠OAC=90°,AC∥OB,OA=4,AC=5,OB=6.M、N分别在线段AC、线段BC上运动,当△MON的面积达到最大时,存在一种使得△MON周长最小的情况,则此时点M的坐标为()A.(0,4)B.(3,4)C.(,4)D.(,3)2.如图,△ABC和△DEF是等腰直角三角形,∠C=∠F=90°,AB=2,DE=4.点B与点D重合,点A,B(D),E在同一条直线上,将△ABC沿DE方向平移,至点A与点E重合时停止.设点B,D之间的距离为x,△ABC与△DEF重叠部分的面积为y,则准确反映y与x之间对应关系的图象是() ABCD二、填空题3. (2016•绥化)如图,在四边形ABCD中,对角线AC、BD相交于点E,∠DAB=∠CDB=90°,∠ABD=45°,∠DCA=30°,AB=,则AE= (提示:可过点A作BD的垂线)4.如图,一块直角三角形木板△ABC,将其在水平面上沿斜边AB所在直线按顺时针方向翻滚,使它滚动到△A″B″C″的位置,若BC=1cm,AC=3cm,则顶点A运动到A″时,点A所经过的路径是_________cm. 1三、解答题5.(2017•莒县模拟)在边长为1的正方形ABCD中,点E是射线BC上一动点,AE与BD相交于点M,AE或其延长线与DC或其延长线相交于点F,G是EF的中点,连结CG.(1)如图1,当点E在BC边上时.求证:①△ABM≌△CBM;②CG⊥CM.(2)如图2,当点E在BC的延长线上时,(1)中的结论②是否成立?请写出结论,不用证明.(3)试问当点E运动到什么位置时,△MCE是等腰三角形?请说明理由.6.如图,等腰Rt△ABC中,∠C=90°,AC=6,动点P、Q分别从A、B两点同时以每秒1个单位长的速度按顺时针方向沿△ABC的边运动,当Q运动到A点时,P、Q停止运动.设Q点运动时间为t秒,点P运动的轨迹与PQ、AQ围成图形的面积为S.求S关于t的函数解析式. 7.正方形ABCD中,点F为正方形ABCD内的点,△BFC绕着点B按逆时针方向旋转90°后与△BEA重合.(1)如图1,若正方形ABCD的边长为2,BE=1,FC=3,求证:AE∥BF;(2)如图2,若点F为正方形ABCD对角线AC上的点,且AF:FC=3:1,BC=2,求BF的长.28.将正方形ABCD和正方形BEFG如图1摆放,连DF.(1)如图2,将图1中的正方形BEFG绕B点顺时针旋转90°,连DF、CG相交于M,则DFCG=_______,∠DMC=_____;(2)如图3,将图1中的正方形BEFG绕B点顺时针旋转45°,DF的延长线交CG于M,试探究DFCG与∠DMC的值,并证明你的结论; (3)若将图1中的正方形BEFG绕B点逆时针旋转β(0°<β<90°),则DFCG=_______,∠DMC=_________.请画出图形,并直接写出你的结论(不用证明).9.已知△ABC≌△ADE,∠BAC=∠DAE=90°.(1)如图(1)当C、A、D在同一直线上时,连CE、BD,判断CE和BD位置关系,填空:CE_____BD.3(2)如图(2)把△ADE绕点A旋转到如图所示的位置,试问(1)中的结论是否仍然成立,写出你的结论,并说明理由.(3)如图(3)在图2的基础上,将△ACE绕点A旋转一个角度到如图所示的△AC′E′的位置,连接BE′、DC′,过点A作AN⊥BE′于点N,反向延长AN交DC′于点M.求DMDC的值.10.将正方形ABCD和正方形CGEF如图1摆放,使D点在CF边上,M为AE中点,(1)连接MD、MF,则容易发现MD、MF间的关系是______________(2)操作:把正方形CGEF绕C点旋转,使对角线CE放在正方形ABCD的边BC的延长线上(CG>BC),取线段AE的中点M,探究线段MD、MF的关系,并加以说明;(3)将正方形CGEF绕点C旋转任意角度后(如图3),其他条件不变,(2)中的结论是否仍成立?直接写出猜想,不需要证明. 【答案与解析】一、选择题1.【答案】B.【解析】如图,过点M作MP∥OA,交ON于点P,过点N作NQ∥OB,分别交OA、MP于两点Q、G,则S△MON=S△OMP+S△NMP=MP•QG+MP•NG=MP•QN,∵MP≤OA,QN≤OB,∴当点N与点B重合,QN取
上传时间:2023-04-30 页数:12
266人已阅读
(5星级)
客服
客服QQ:
2505027264
客服电话:
18182295159
微信小程序
微信公众号
回到顶部