

解直角三角形及其应用—知识讲解【学习目标】1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形;2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.【要点梳理】要点一、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系: ,,, ,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.要点二、解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,1一边一角一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,解直角三角形即要求出所有的未知元素,已知条件中至少有一个条件为边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做2俯角,如图. (3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.3【典型例题】类型一、解直角三角形1.在Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,根据下列条件,解这个直角三角形.(1)∠B=60°,a=4;(2)a=1,.【答案与解析】 (1)∠A=90°-∠B=90°-60°=30°.由知,.由知,.(2)由得∠B=60°,∴∠A=90°-60°=30°.∵,∴.【总结升华】解直角三角形的两种类型是:(1)已知两边;(2)已知一锐角和一边.解题关键是正确选择边角关系.常用口诀:有弦(斜边)用弦(正弦、余弦),无弦(斜边)用切(正切).(1)首先用两锐角互余求锐角∠A,再利用∠B的正切、余弦求b、c的值;(2)首先用正切求出∠B的值,再求∠A的值,然后由正弦或余弦或勾股定
上传时间:2023-04-30 页数:8
288人已阅读
(5星级)
【巩固练习】一、选择题1.(2015•江阴市模拟)﹣5的相反数是()A.5B.-5C.±5D.﹣2.下列说法正确的是()A.数轴上一个点可以表示两个不同的有理数B.数轴上的两个不同的点表示同一个有理数C.有的有理数不能在数轴上表示出来D.任何一个有理数都可以在数轴上找到与它对应的唯一点3.(2016•呼和浩特)互为相反数的两个数的和为()A.0B.﹣1 C.1D.24.如图,有理数a,b在数轴上对应的点如下,则有().(A)a>0>b(B)a>b>0(C)a<0<b(D)a<b<05. 一个数比它的相反数小,这个数是()A.正数 B.负数 C.非正数 D.非负数6. 如果,那么两个数一定是( )A.都等于0 B.一正一负 C.互为相反数D.互为倒数二、填空题1.________________的两个数,叫做互为相反数;零的相反数是________.2.(2015春•岳池县期中)若3a﹣4b与7a﹣6b互为相反数,则a与b的关系为.3.(2016•岳阳)如图所示,数轴上点A所表示的数的相反数是.4.数轴上离原点5个单位长度的点有______个,它们表示的数是,它们之间的关系是.5.化简下列各数:(1)________ ;(2)________ ;(3)________.6.已知-1<a<0<1<b,请按从小到大的顺序排列-1,-a,0,1,-b为__________.三、解答题1.小敏的家、学校、邮局、图书馆坐落在一条东西走向的大街上,依次记为A、B、C、D,学校位于小敏家西150米,邮局位于小敏家东100米,图书馆位于小敏家西400米.(1)用数轴表示A、B、C、D的位置(建议以小敏家为原点).(2)一天小敏从家里先去邮局寄信后.以每分钟50米的速度往图书馆方向走了约8分钟.试问这时小敏约在什么位置?距图书馆和学校各约多少米?12.已知:a是﹣(﹣5)的相反数,b比最小的正整数大4,c是最大的负整数.计算:3a+3b+c的值是多少?3.化简下列各数,再用<连接.(1)-(-54)(2)-(+3.6)(3) (4)4.已知3m-2与-7互为相反数,求m的值.【答案与解析】一、选择题1.【答案】A2.【答案】D【解析】A、B、C都错误,因为所有的有理数都能在数轴上表示出来,但数轴上的点不都表示有理数;一个有理数在数轴上只有一个表示它的点.数轴上表示有理数的点一个点对应一个有理数.3.【答案】A 【解析】解:互为相反数的两个数的和为0.故选:A.4. 【答案】C5. 【答案】B【解析】因为一个负数的相反数是一个正数,负数小于正数,所以选B 6. 【答案】C【解析】若,则一定互为相反数;反之,若互为相反数,则.二、填空题1. 【答案】只有符号不同,零 【解析】相反数的定义2.【答案】a=b.【解析】∵3a﹣4b与7a﹣6b互为相反数,∴3a﹣4b+7a﹣6b=0,∴a=b.3.【答案】2.【解析】解:数轴上点A所表示的数是﹣2,﹣2的相反数是2,故答案为:2.4. 【答案】两个,±5,互为相反数5. 【答案】 2【解析】多重符号的化简是由-的个数来定,若-个数为偶数个时,化简结果为正,;若-个数为奇数个时,化简结果为负.6. 【答案】- b <-1<0<-a<1.三、解答题1. 【解析】(1)如图所示(2)小敏从邮局出发,以每分钟50米的速度往图书馆方向走了约8分钟,其路程为50×8=400(米),由上图知,此时小敏位于家西300米处,所以小敏在学校与图书馆之间,且距图书馆100米,距学校150米.2. 【解析】∵a是﹣(﹣5)的相反数,∴a=﹣5,∵b比最小的正整数大4,∴b=1+4=5,∵c是最大的负整数,∴c=﹣1,∴3a+3b+c=3×(﹣5)+3×5﹣1,=﹣15+15﹣1,=﹣1.3.【解析】(1)-(-54)=54(2)-(+3.6)=-3.6(3)(4),将化简后的数表示在数轴上,由图可得:-(+3.6) <<<-(-54). 4.【解析】依题意:3m-2=7,故m=3.3
上传时间:2023-04-30 页数:3
288人已阅读
(5星级)
2021年湖北省黄石市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1. 的倒数是()A. ﹣2B. C. D. 【答案】A【解析】【分析】直接利用倒数的定义得出答案.【详解】解:的倒数是:-2.故选:A.【点睛】本题主要考查了倒数,正确掌握相关定义是解题关键.2. 下列几何图形中,是轴对称图形但不是中心对称图形的是()A. 梯形B. 等边三角形C. 平行四边形D. 矩形【答案】B【解析】【分析】根据轴对称图形和中心对称图形的定义以及性质对各项进行分析即可.【详解】A、梯形不是轴对称图形,也不是中心对称图形,故本选项说法错误;B、等边三角形是轴对称图形,但不是中心对称图形,故本选项说法正确;C、平行四边形不是轴对称图形,是中心对称图形,故本选项说法错误;D、矩形是轴对称图形,也是中心对称图形,故本选项说法错误.故选:B.【点睛】本题考查了轴对称图形和中心对称图形的判断,掌握轴对称图形和中心对称图形的定义以及性质是解题的关键.3. 如图是由6个小正方体拼成的几何体,该几何体的左视图是()A. B. C. D. 【答案】D【解析】【分析】找到从几何体的左边看所得到的图形即可.【详解】解:左视图有2列,每列小正方形数目分别为2,1.故选:D.【点睛】本题主要考查了简单几何体的三视图,关键是掌握所看的位置.4. 计算的结果是()A. 25x5y2B. 25x6y2C. -5x3y2D. -10x6y2【答案】B【解析】【详解】解:=.故选B.5. 函数的自变量的取值范围是()A. B. C. 且D. 且【答案】C【解析】【分析】根据被开方数大于等于0,分母不为0以及零次幂的底数不为0,列式计算即可得解.【详解】解:函数的自变量的取值范围是:且,解得:且,故选:C.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6. 为庆祝中国共产党建党100周年,某校开展主题为《党在我心中》的绘画、书法、摄影等艺术作品征集活动,从八年级5个班收集到的作品数量(单位:件)分别为50、45、42、46、50,则这组数据的众数是()A. 46B. 45C. 50D. 42【答案】C【解析】【分析】根据众数的定义,找到该组数据中出现次数最多的数即为众数.【详解】解:这组数据中出现次数最多的是50,所以众数为50,故选:C.【点睛】本题主要考查了众数,解题的关键是掌握众数的定义.7. 如图,的三个顶点都在方格纸的格点上,其中点的坐标是,现将绕点按逆时针方向旋转,则旋转后点的坐标是()A. B. C. D. 【答案】B【解析】【分析】在网格中绘制出CA旋转后的图形,得到点C旋转后对应点.【详解】如图,绘制出CA绕点A逆时针旋转90°的图形,由图可得:点C对应点的坐标为(-2,3) .故选B.【点睛】本题考查旋转,需要注意题干中要求顺时针旋转还是逆时针旋转.8. 如图,、是上的两点,,交于点,则等于()A. B. C. D. 【答案】C【解析】【分析】由题意得是等边三角形,结合可得,再根据同弧所对的圆周角等于它所对圆心角的一半即可得出.【详解】解:∵OA=OB,∠AOB=60°∴△AOB是等边三角形,∵∴ ∴ 故选:C【点睛】此题主要考查了等边三角形的判定与性质以及同弧或等弧所对的圆周角和圆心角的关系,掌握同弧所对的圆周角等于它所对圆心角的一半是解题的关键.9. 如图,在中,,按以下步骤作图:①以为圆心,任意长为半径作弧,分别交、于、两点;②分别以、为圆心,以大于的长为半径作弧,两弧相交于点;③作射线,交边于点.若,,则线段的长为()A. 3B. C. D. 【答案】A【解析】【分析】由尺规作图痕迹可知,BD是∠ABC的角平分线,过D点作DH⊥AB于H点,设DC=DH=x则AD=AC-DC=8-x,BC=BH=6,AH=AB-BH=4,在Rt△ADH中,由勾股定理得到 ,由此即可求出x的值.【详解】解:由尺规作图痕迹可知,BD是∠ABC的角平分线,过D点作DH⊥AB于H点,∵∠C=∠DHB=90°,∴DC=DH,,设DC=DH=x,则AD=AC-DC=8-x,BC=BH=6,AH=AB-BH=4,在Rt△ADH中,由勾股定理:,代入数据:,解得,故,故选:A.【点睛】本题考查了角平分线的尺规作图,在角的内部角平分线上的点到角两边的距离相等,勾股定理等相关知识点,熟练掌握角平分线的尺规作图是解决本题的关键.10. 二次函数(、、是常数,且)的自变量与函数值的部分对应值如
上传时间:2023-05-08 页数:30
287人已阅读
(5星级)
2021年四川省自贡市中考数学试卷一、选择题(共12个小题,每小题4分,共48分,在每题给出的四个选项中,只有一项是符合题目要求的)1. 自贡恐龙博物馆是世界三大恐龙遗址博物馆之一.今年五一黄金周共接待游客8.87万人次,人数88700用科学记数法表示为( )A. B. C. D. 【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解: 88700用科学记数法表示为.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2. 如图是一个小正方体的展开图,把展开图折叠成小正方体后,有迎字一面的相对面上的字是()A. 百B. 党C. 年D. 喜【答案】B【解析】【分析】正方体的表面展开图一四一型,相对的面之间一定相隔一个正方形,根据这一特点解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方体,迎与党是相对面,建与百是相对面,喜与年是相对面.故答案为:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.3. 下列运算正确的是()A. B. C. D. 【答案】B【解析】【分析】根据合并同类项法则,积的乘方,同底数幂的除法,完全平方公式逐一计算即可.【详解】解:A.,该项运算错误;B.,该项运算正确;C.,该项运算错误;D.,该项运算错误;故选:B.【点睛】本题考查整式的运算,掌握合并同类项法则,积的乘方,同底数幂的除法,完全平方公式是解题的关键.4. 下列图形中,是轴对称图形且对称轴条数最多的是()A. B. C. D. 【答案】D【解析】【分析】利用轴对称图形的定义逐一判断即可.【详解】解:A是轴对称图形,对称轴有1条;B不是轴对称图形;C不是轴对称图形;D是轴对称图形,对称轴有2条;故选:D.【点睛】本题考查识别轴对称图形,掌握轴对称图形的定义是解题的关键.5. 如图,AC是正五边形ABCDE的对角线,的度数是( )A. 72°B. 36°C. 74°D. 88°【答案】A【解析】【分析】根据正五边形的性质可得,,根据等腰三角形的性质可得,利用角的和差即可求解.【详解】解:∵ABCDE是正五边形,∴,,∴,∴,故选:A.【点睛】本题考查正五边形的性质,求出正五边形内角的度数是解题的关键.6. 学校为了解阳光体育活动开展情况,随机调查了50名学生一周参加体育锻炼时间,数据如下表所示:人数(人)9161411时间(小时)78910这些学生一周参加体育锻炼时间的众数、中位数分别是()A. 16,15B. 11,15C. 8,8.5D. 8,9【答案】C【解析】【分析】根据众数和中位数的意义与表格直接求解即可.【详解】解:这50名学生这一周在校的体育锻炼时间是8小时的人数最多,故众数为8;统计表中是按从小到大的顺序排列的,最中间两个人的锻炼时间分别是8,9,故中位数是(8+9)÷2=8.5.故选:C.【点睛】本题考查了众数和中位数的意义,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7. 已知,则代数式的值是()A. 31B. C. 41D. 【答案】B【解析】【分析】根据题意,可先求出x2-3x的值,再化简,然后整体代入所求代数式求值即可.【详解】解:∵,∴,∴.故选:B.【点睛】此题考查了代数式求值,此题的关键是代数式中的字母表示的数没有明确告知,而是隐含在题设中,得出,是解题的关键.8. 如图,,,以点A为圆心,AC长为半径画弧,交y轴正半轴于点B,则点B的坐标为()A. B. C. D. 【答案】D【解析】【分析】先根据题意得出OA=8,OC=2,再根据勾股定理计算即可【详解】解:由题意可知:AC=AB∵,∴OA=8,OC=2∴AC=AB=10在Rt△OAB中,∴B(0,6)故选:D【点睛】本题考查勾股定理、正确写出点的坐标,圆的半径相等、熟练进行勾股定理的计算是关键9. 已知蓄电池的电压为定值,使用蓄电池时,电流O(单位:A)与电阻R(单位:)是反比例函数关系,它的图象如图所示.下列说法正确的是()A. 函数解析式为B. 蓄电池的电压是18VC. 当时,D. 当时,【答案】C【解析】【分析】将将代入求出U的值,即可判断A,B,D,利用反比例函数的增
上传时间:2023-05-08 页数:29
287人已阅读
(5星级)
【巩固练习】一、选择题1.(2015春•深圳校级期中)下列语句中不正确的是() A.斜边和一锐角对应相等的两个直角三角形全等 B.有两边对应相等的两个直角三角形全等 C.有两个锐角相等的两个直角三角形全等 D.有一直角边和一锐角对应相等的两个直角三角形全等2.如图,AB=AC,AD⊥ BC于D,E、F为AD上的点,则图中共有()对全等三角形.A.3B.4C.5D.63. 能使两个直角三角形全等的条件是() A.斜边相等 B.一锐角对应相等C.两锐角对应相等 D.两直角边对应相等4. 在Rt△ABC与Rt△'''ABC中, ∠C = ∠'C = 90, A = ∠'B, AB =''AB,那么下列结论中正确的是()A. AC = ''ACB.BC = ''BC C. AC = ''BC D. ∠A = ∠'A5. (2016春•蓝田县期末)如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40°B.50°C.60°D.75°6. 在两个直角三角形中,若有一对角对应相等,一对边对应相等,则两个直角三角形() A.一定全等B.一定不全等C.可能全等 D.以上都不是二、填空题7.如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是______.8. 已知,如图,∠A=∠D=90°,BE=CF,AC=DE,则△ABC≌_______.19. 如图,BA∥DC,∠A=90°,AB=CE,BC=ED,则AC=_________.10.(2016春•普宁市期末)如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用HL判定△ABC≌△DBE,则需要添加的一个条件是.11.有两个长度相同的滑梯,即BC=EF,左边滑梯的高度AC与右边滑梯的水平方向的长度DF相等,则∠ABC+∠DFE=________.12. 如图,已知AD是△ABC的高,E为AC上一点,BE交AD于F,且BF=AC,FD=CD.则∠BAD=_______.三、解答题13. 如图,工人师傅要在墙壁的O处用钻打孔,要使孔口从墙壁对面的B点处打开,墙壁厚是35cm,B点与O点的铅直距离AB长是20cm,工人师傅在旁边墙上与AO水平的线上截取OC=35cm,画CD⊥OC,使CD=20cm,连接OD,然后沿着DO的方向打孔,结果钻头正好从B点处打出,这是什么道理呢?请你说出理由.2 14.(2014秋•黄石港区校级月考)如图,用三角尺可按下面方法画角平分线:在∠AOB的两边上分别取OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则得到OP平分∠AOB.请用你所学的知识说明其中的道理.15. 如图,已知AB=AC,AE=AF,AE⊥EC,AF⊥BF,垂足分别是点E、F.求证:∠1=∠2.【答案与解析】一、选择题1. 【答案】C;【解析】解:A、∵直角三角形的斜边和一锐角对应相等,所以另一锐角必然相等,∴符合ASA定理,故本选项正确;B、两边对应相等的两个直角三角形全等,若是两条直角边,可以根据SAS判定全等,若是直角边与斜边,可根据HL判定全等.故本选项正确;C、有两个锐角相等的两个直角三角形相似,故本选项错误;D、有一直角边和一锐角对应相等的两个直角三角形符合ASA定理,可判定相等,故本选项正确.故选C.2. 【答案】D;【解析】△ABD≌△ACD;△ABF≌△ACF;△ABE≌△ACE;△EBF≌△ECF;△EBD≌△ECD;△FBD≌△FCD.3. 【答案】D;4. 【答案】C; 【解析】注意看清对应顶点,A对应'B,B对应'A.5. 【答案】B;3 【解析】解:∵∠B=∠D=90°,在Rt△ABC和Rt△ADC中∴Rt△ABC≌Rt△ADC(HL)∴∠2=∠ACB=90°﹣∠1=50°.故选B.6. 【答案】C; 【解析】如果这对角不是直角,那么全等,如果这对角是直角,那么不全等.二、填空题7. 【答案】HL;8. 【答案】△DFE9. 【答案】CD; 【解析】通过HL证Rt△ABC≌Rt△CDE.10.【答案】AC=DE; 【解析】解∵AB⊥DC,∴∠ABC=∠DBE=90°,在RtAB△C和Rt△DBE中,,∴RtAB△CRt≌△DBE(HL),故答案为:AC=DE.11.【答案】90°; 【解析】通过HL证Rt△ABC≌Rt△DEF,∠BCA=∠DFE.12.【答案】45°;【解析】证△ADC与△BDF全等,AD=BD,△ABD为等腰直角三角形.三、解答题13.【解析】 解:在Rt△AOB与Rt△COD中, (3590AOBC
上传时间:2023-04-30 页数:5
287人已阅读
(5星级)
统计调查知识讲解【学习目标】1.了解全面调查和抽样调查的优缺点,能选择合适的调查方式,解决有关问题;2.了解总体、样本、样本容量等相关概念;3. 会用扇形统计图、条形统计图和折线统计图表示数据,并能从统计图或表中获取信息.【要点梳理】要点一、统计调查1.统计相关概念总体:调查时,调查对象的全体叫做总体.个体:组成总体的每一个调查对象叫做个体.样本:从总体中取出的一部分个体叫做总体的一个样本.样本容量:样本中个体的数量叫做样本容量(不带单位).要点诠释:(1)调查对象的全体一般是指调查对象的某种数量指标的全体,如对于一个班级,如果考察的是这个班学生的身高,那么总体是指这个班学生身高的全体,不能错误地理解为学生的全体是总体. (2)样本是总体的一部分,一个总体中可以有许多样本,样本在一定程度上能够反映总体,为了使样本能较好地反映总体情况,在选取样本时要注意使其具有一定的代表性.(3) 样本容量是一个数字,不能有单位.一般地,样本容量越大,通过样本对总体的估计越精确,在实际研究中,要根据具体情况确定样本容量的大小.例如:从5万名考生的数学成绩中抽取2000名考生的数学成绩进行分析,样本是2000名考生的数学成绩,而样本容量是2000,不能将其误解为2000名考生或2000名.2. 调查的方法:全面调查和抽样调查(1)全面调查:考察全体对象的调查叫做全面调查.要点诠释: (1)全面调查又叫普查,它是指在统计的过程中,为了某种特定的目的而对所有考察的对象一一作出的调查,在记录数据时,通常用划记法进行记录数据. (2)一般来说,全面调查能够得到全体被调查对象的全面、准确的信息,但有时总体中的个体的数目非常大,全面调查的工作量太大;有时受条件的限制,无法进行全面调查;有时调查具有破坏性(例如:测试一批灯泡的使用寿命或炮弹的杀伤半径等),不能进行全面调查.(2)抽样调查:从调查对象中抽取部分对象进行调查,然后根据调查的数据推断全体对象的情况,这种调查方式称为抽样调查.要点诠释:(1)从总体中抽取部分个体进行调查的方式,我们称抽样调查,在抽取的过程中,总体中的每一个个体都有相等的机会被抽到,像这样的抽样方式是一种简单随机抽样.(2)抽样调查方便、快捷,能够减少调查统计的工作量但调查的结果不如全面调查得到的结果准确.(3)调查方法的选择: ①全面调查是对考查对象的全体调查,它要求对考查范围内所有个体进行一个不漏的逐个准确统计;而抽样调查则只是对总体中的部分个体进行调查,以样本来估计总体的情况.②在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考1虑实现的可能性和所付出代价的大小.要点二、数据的描述描述数据的方法有两种:统计表和统计图.统计表:利用表格将要统计的数据填入相应的表格内,表格统计法可以很好地整理数据统计图:利用条形图、扇形图、折线图描述数据,这样做的最大优点是将表格中的数据所呈现出来的信息直观化.要点诠释:(1)条形统计图:用线段长度表示数据,根据数据的多少画成长短不同的长方形直条,然后按顺序把这些直条排列起来,条形统计图很容易看出数据的大小,便于比较,但不能清楚地反映各部分占总体的百分比.(2)扇形统计图:用整个圆表示总体,用圆内各个扇形的大小表示各部分数量,从扇形上可清楚地看出各部分量和总数量之间的关系,但不能直接表示出各个项目的具体数据.(3)折线统计图:用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况,但不能清楚地反映数据的分布情况.【典型例题】类型一、统计学及其相关概念1.某次考试有3000名学生参加,为了了解3000名学生的数学成绩,从中抽取了1000名学生的数学成绩进行调查统计分析,在这个问题中,有下述3种说法:①1000名考生是总体的一个样本;②3000名考生是总体;③1000名考生数学平均成绩可估计总体数学平均成绩;④每个考生的数学成绩是个体.其中正确的说法有().A.0种B.1种C.2种D.3种【思路点拨】总体是3000名学生的数学成绩,个体是这次考试中每名学生的数学成绩,样本是抽取的1000名学生的数学成绩,样本容量是1000.【答案】C.【解析】 解:①、②两个说法指的是考生而不是考生的成绩,故①、②两个说法不对,④指的是考生的成绩,故④对.③用样本的特征估计总体的特征,是抽样调查的核心,故③对.【总结升华】总体、样本的考察对象是相同的,所不同的是范围的大小,在本题中,总体、样本都是指考生的成绩,而不是考生.举一反三:【变式】为了了解某市2万名学生参加中考的情况,教育部门从中抽取了60
上传时间:2023-04-30 页数:7
287人已阅读
(5星级)
一元二次方程的解法(二)配方法—知识讲解(基础)【学习目标】1.了解配方法的概念,会用配方法解一元二次方程;2.掌握运用配方法解一元二次方程的基本步骤;3.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能力.【要点梳理】知识点一、一元二次方程的解法配方法1.配方法解一元二次方程:(1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方; ④再把方程左边配成一个完全平方式,右边化为一个常数; ⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是配方,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式2222()aabbab.知识点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:配方法在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.4.用于证明:配方法在代数证明中有着广泛的应用,我们学习二次函数后还会知道配方法在二次函数中也有着广泛的应用.要点诠释:配方法在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好. 【典型例题】类型一、用配方法解一元二次方程11. (2016•淄博)解方程:x2+4x1=0﹣.【思路点拨】首先进行移项,得到x2+4x=1,方程左右两边同时加上4,则方程左边就是完全平方式,右边是常数的形式,再利用直接开平方法即可求解.【答案与解析】解:∵x2+4x1=0﹣∴x2+4x=1∴x2+4x+4=1+4∴(x+2)2=5∴x=2﹣±∴x1=2﹣+,x2=2﹣﹣.【总结升华】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.举一反三:【变式】用配方法解方程.(1)x2-4x-2=0; (2)x2+6x+8=0. 【答案】(1)方程变形为x2-4x=2. 两边都加4,得x2-4x+4=2+4. 利用完全平方公式,就得到形如(x+m)2=n的方程,即有(x-2)2=6. 解这个方程,得x-2=或x-2=-. 于是,原方程的根为x=2+或x=2-. (2)将常数项移到方程右边x2+6x=-8. 两边都加一次项系数一半的平方=32,得 x2+6x+32=-8+32, ∴ (x+3)2=1. 用直接开平方法,得x+3=±1, ∴ x=-2或x=-4.类型二、配方法在代数中的应用2.若代数式221078Maba,2251Naba,则MN的值()A.一定是负数 B.一定是正数 C.一定不是负数D.一定不是正数【答案】B;【解析】(作差法)22221078(51)MNabaaba2222107851abaaba229127aa291243aa2(32)30a.故选B.【总结升华】本例是配方法在比较大小中的应用,通过作差法最后拆项、配成完全平方,使此差大于零而比较出大小.3.(2014•甘肃模拟)用配方法证明:二次三项式﹣8x2+12x﹣5的值一定小于0.【答案与解析】解:﹣8x2+12x5=8﹣﹣(x2﹣x)﹣5=8[x﹣2﹣x+()2]5+8×﹣()2=8﹣(x﹣)2﹣,∵(x﹣)2≥0,∴﹣8(x﹣)2≤0,∴﹣8(x﹣)2﹣<0,即﹣8x2+125﹣的值一定小于0.【总结升华】利用配方法将代数式配成完全平方式后,再分析代数式值的符号. 注意在变形的过程中不要改变式子的值.举一反三:【变式】求代数式 x2+8x+17的最小值【答案】x2+8x+17= x2+8x+42-
上传时间:2023-04-30 页数:4
286人已阅读
(5星级)
坐标方法的简单应用(基础)知识讲解【学习目标】1.能建立适当的平面直角坐标系描述物体的位置.2. 能在同一坐标系中,感受图形变换后点的坐标的变化.【要点梳理】要点一、用坐标表示地理位置根据已知条件,建立适当的平面直角坐标系,是确定点的位置的必经过程,只有建立了适当的直角坐标系,点的位置才能得以确定,才能使数与形有机地结合在一起.利用平面直角坐标系绘制区域内一些地点分布情况的过程:(1)建立坐标系,选择一个适当的参照点为原点,确定x轴,y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.要点诠释:(1)建立坐标系的关键是确定原点和坐标轴的位置,我们一般选择那些使点的位置比较容易确定的方法,例如借助于图形的某边所在直线为坐标轴等,而建立平面直角坐标系的方法是不唯一的.所建立的平面直角坐标系也不同,得到的点的坐标不同.(2)应注意比例尺和坐标轴上的单位长度的确定.要点二、用坐标表示平移1.点的平移:在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.2.图形的平移:在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化.【典型例题】类型一、用坐标表示地理位置1.(2015春•建昌县期末)课间操时,小聪、小慧、小敏的位置如图所示,小聪对小慧说,如果我的位置用(1,1)表示,小敏的位置用(7,7)表示,那么你的位置可以表示成()1A.(5,4)B.(4,4)C.(3,4)D.(4,3)【答案】B.【解析】解:如图,小慧的位置可表示为(4,4).【总结升华】本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.2.如图所示,在一次敌我双方交战中,我军先头部队在距敌方据点A处200米的B处遇到敌方火力阻击,为了尽快扫除障碍,使我军驻C处的后续大部队顺利前进,先头部队请求大部队炮火支援.如果你就在先头部队中,你能表述出敌方据点的准确位置吗?【思路点拨】建立适当的直角坐标系,把A、B、C三点的位置用坐标表示出来.【答案与解析】解:如图所示,以B点为坐标原点,正东方向为x轴的正方向,正北方向为y轴正方向,建立平面直角坐标系,A、B、C各点的位置为A(-200,0)、B(0,0)、C(800,-600).2若以A为坐标原点,正东方向为x轴的正方向,正北方向为y轴正方向,建立平面直角坐标系,A、B、C各点的位置为A(0,0)、B(200,0)、C(1000,-600).若以C为坐标原点,正东方向为x轴的正方向,正北方向为y轴正方向,建立平面直角坐标系,A、B、C各点的位置为A(-1000,600)、B(-800,600)、C(0,0).【总结升华】对于本题,选取的坐标原点不同,各个据点的坐标也不同,不论是哪个点表示原点,都要让人一听一看就清楚所描述的位置.当然,就本题而言,选择B点为坐标原点更贴切一些. 举一反三:【变式】如图所示是某市市区几个旅游景点的示意图(图中每个小正方形的边长都为1个单位长度),请以某景点为坐标原点,画出直角坐标系,并用坐标表示下列景点的位置.光岳楼________,金风广场________,动物园________.【答案】本题的答案不唯一,现给出三种答案:(1)如果以山峡会馆为坐标原点,水平方向为横轴,取向右方向为正方向,竖直方向为纵轴,取竖直向上方向为正方向,则光岳楼的位置是(-3,1),金风广场的位置是,动物园的位置是(4,4);(2)如果以光岳楼为坐标原点,水平方向为横轴,取向右方向为正方向,竖直方向为纵轴,取竖直向上方向为正方向,则光岳楼的位置是(0,0),金风广场的位置是,动物园的位置是(7,3);(3)若以动物园为坐标原点,水平方向为横轴.取向右方向为正方向,竖直方向为纵轴,3取竖直向上方向为正方向,则光岳楼(-7,-3),金风广场,动物园(0,0).类型二、用坐标
上传时间:2023-04-30 页数:5
286人已阅读
(5星级)
宿迁市2021年初中学业水平考试注意事项:1.本试卷共6页,全卷满分120分,考试时间为120分钟,考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名﹑考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案,答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1. ﹣3的相反数为()A. ﹣3B. ﹣C. D. 32. 对称美是美的一种重要形式,它能给与人们一种圆满、协调和平的美感,下列图形属于中心对称图形的是()A. B. C. D. 3. 下列运算正确的是()A. B. C. D. 4. 已知一组数据:4,3,4,5,6,则这组数据的中位数是()A. 3B. 3.5C. 4D. 4.55. 如图,在△ABC中,∠A=70°,∠C=30°,BD平分∠ABC交AC于点D,DE∥AB,交BC于点E,则∠BDE的度数是()A. 30°B. 40°C. 50°D. 60°6. 已知双曲线过点(3,)、(1,)、(-2,),则下列结论正确的是()A. B. C. D. 7. 折叠矩形纸片ABCD,使点B落在点D处,折痕为MN,已知AB=8,AD=4,则MN的长是( )A. B. 2C. D. 48. 已知二次函数的图像如图所示,有下列结论:①;②>0;③;④不等式<0的解集为1≤<3,正确的结论个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)9. 若代数式有意义,则的取值范围是____________.10. 2021年4月,白鹤滩水电站正式开始蓄水,首批机组投产发电开始了全国冲刺,该电站建成后,将仅次于三峡水电站成为我国第二大水电站,每年可减少二氧化碳排放51600000吨,减碳成效显著,对促进我市实现碳中和目标具有重要作用,51600000用科学计数法表示为___________.11. 分解因式:=______.12. 方程的解是_____________.13. 已知圆锥的底面圆半径为4,侧面展开图扇形的圆心角为120°,则它的侧面展开图面积为_____________.14. 《九章算术》中有一道引葭赴岸问题:仅有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B'(示意图如图,则水深为__尺.15. 如图,在Rt△ABC中,∠ABC=90°,∠A=32°,点B、C在上,边AB、AC分别交于D、E两点﹐点B是的中点,则∠ABE=__________.16. 如图,点A、B在反比例函数的图像上,延长AB交轴于C点,若△AOC的面积是12,且点B是AC的中点,则 =__________.17. 如图,在△ABC中,AB=4,BC=5,点D、E分别在BC、AC上,CD=2BD,CF=2AF,BE交AD于点F,则△AFE面积的最大值是_________.三、简答题(本大题共10小题,共96分,请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤)18. 计算:4sin45°19. 解不等式组,并写出满足不等式组的所有整数解.20. 某机构为了解宿迁市人口年龄结构情况,对宿迁市的人口数据进行随机抽样分析,绘制了如下尚不完整的统计图表:类别ABCD年龄(t岁)0≤t<1515≤t<6060≤t<65t≥65人数(万人)4.711.6m2.7根据以上信息解答下列问题:(1)本次抽样调查,共调查了____万人;(2)请计算统计表中的值以及扇形统计图中C对应的圆心角度数;(3)宿迁市现有人口约500万人,请根据此次抽查结果,试估计宿迁市现有60岁及以上的人口数量.21. 在①AE=CF;②OE=OF;③BE∥DF这三个条件中任选一个补充在下面横线上,并完成证明过程.已知,如图,四边形ABCD是平行四边形,对角线AC、BD相交于点O,点E、F在AC上,(填写序号).求证:BE=DF.注:如果选择多个条件分别解答,按第一个解答计分.22. 即将举行
上传时间:2023-05-08 页数:8
285人已阅读
(5星级)
北师大版七年级数学下册第6章《概率初步》单元测试试卷及答案(1)一、选择题1.下列说法正确的是().A.抛掷硬币试验中,抛掷500次和抛掷1 000次结果没什么区别B.投掷质量分布均匀的六面体骰子600次,骰子六面分别标有1,2,3,4,5,6,那么出现5点的机会大约为100次C.小丽的幸运数是8,所以她抛出8的机会比她抛出其他数字的机会大D.某彩票的中奖机会是1%,买1张一定不会中奖2.书包里有数学书3本,英语书2本,语文书5本,从中任意抽取一本,则是数学书的概率是().A.B. C.D.3.任意一个事件发生的概率P的范围是().A.0<P<1B.0≤P<1C.0<P≤1D.0≤P≤14.一个袋中装有3个红球,5个黄球,10个绿球,小强从袋中任意摸出一球是黑球的概率为().A.0B.1C.D.5.三人同行,有两人性别相同的概率是().A.1B.C.D.06.在一个不透明的口袋中装有若干个只有颜色不同的球,如果口袋中装有4个红球,且摸出红球的概率为,那么袋中共有球的个数为().A.12B.9C.7D.67.用写有0,1,2的三张卡片排成三位数是偶数的概率为().A.B.C.D.8.高速公路上依次有A,B,C三个出口,A,B之间的距离为m km,B,C之间的距离为n km,决定在A,C之间的任意一处增设一个生活服务区,则此生活服务区设在A,B之间的概率为().A.B. C.D.9.在一个暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现摸到红球的频率稳定在25%,那么可以推算出a大约是().A.12B.9C.4D.3二、填空题10.任意抛掷一枚质量均匀的硬币两次,出现两次都为正面朝上的概率为__________,出现两次都为相同的面的概率为__________,出现至少有一面是正面的概率为__________.11.蓝猫走进迷宫,迷宫中的每一个门都相同,第一道关口有三个门,只有第三个门有开关,第二道关口有两个门,只有第一个门有开关,蓝猫一次就能走出迷宫的概率是__________.12.小兰和小青两人做游戏,有一个质量分布均匀的六面体骰子,骰子的六个面分别标有1,2,3,4,5,6,如果掷出的骰子的点数是偶数,则小兰赢;如果掷出的骰子的点数是3的倍数,则小青赢,那么游戏规则对__________有利.13.有朋友约定明天上午8:00~12:00的任一时刻到学校与王老师会面,王老师明天上午要上三节课,每节课45分钟,朋友到学校时王老师正巧不在上课的概率是__________.14.某商场在五·一期间推出购物摸奖活动,摸奖箱内有除颜色以外完全相同的红色、白色乒乓球各两个.顾客摸奖时,一次摸出两个球,如果两个球的颜色相同就得奖,颜色不同则不得奖.那么顾客摸奖一次,得奖的概率是__________.15.小浩有红,白,蓝三件上衣和黄,黑两条裤子,则他穿白色上衣配黑色裤子的概率是__________.16.在创建国家生态园林城市活动中,某市园林部门为了扩大城市的绿化面积,进行了大量的树木移栽.下表记录的是在相同的条件下移栽某种幼树的棵数与成活棵数:移栽棵数1001 00010 000成活棵数899109 008依此估计这种幼树成活的概率是__________.(结果用小数表示,精确到0.1)三、解答题17.如图所示,三个相同的盒子里各放有一个塑料制成的圆环,这三个大小不同的圆环恰好可以按如图所示那样较紧密地套在一起,我们随意从三个盒子中拿出两个,则这两个圆环可以比较紧密地套在一起的概率有多大?来源:http://www.bcjy123.com/tiku/18.小红、小丽和小华是同班学生,如果他们3人到校先后次序出现的可能性是一样的,那么小丽比小华先到校的概率是多少呢?(3人不同时到校)19.有四张不透明卡片为,,,,除正面的数不同外,其余都相同.将它们背面朝上,洗匀后从中随机抽取一张卡片,抽到写有无理数卡片的概率是多少?20.如图是一个可以自由转动的转盘,转盘被分成了6个扇形,其中标有数字1的扇形的圆心角(即∠AOB)为90°;标有数字2,4及6的扇形(即扇形BOC,扇形DOE,扇形FOA)的圆心角(即∠BOC,∠DOE,∠FOA)均为60°;标有数字3,5的扇形(即扇形COD,扇形EOF)的圆心角(即∠COD,∠EOF)均为45°.利用这个转盘甲、乙两人做下列游戏:自由转动转盘,指针指向奇数则甲获胜,而指针指向偶数则乙获胜,你认为这个游戏对甲,乙双方公平吗?为什么?21.杨成家住宅面积为90平方米,其中大卧室1
上传时间:2023-04-30 页数:3
285人已阅读
(5星级)
中考冲刺:阅读理解型问题(提高)一、选择题1. (2016•绍兴)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即结绳计数.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是() A.84 B.336 C.510 D.13262.任何一个正整数n都可以进行这样的分解:n=s×t(s、t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:.例如18可以分解成1×18,2×9,3×6这三种,这时就有.给出下列关于F(n)的说法:(1);(2);(3)F(27)=3;(4)若n是一个完全平方数,则F(n)=1.其中正确说法的个数是( ).A.1 B.2 C.3 D.4二、填空题3.阅读下列题目的解题过程:已知a、b、c为△ABC的三边长,且满足,试判断△ABC的形状.解:∵, (A) ∴, (B) ∴, (C)∴△ABC是直角三角形.问:(1)上述解题过程中,从哪一步开始出现错误?请写出该错误步骤的代号:________________.(2)错误的原因为:________________________.(3)本题的正确结论为:____________________.4.(2016•高县一模)如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是11cm/s.若点P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数关系图象如图2,有下列四个结论:①AE=6cm;②sin∠EBC=;③当0<t≤10时,y=t2; ④当t=12s时,△PBQ是等腰三角形.其中正确结论的序号是__________________. 三、解答题5.已知p2-p-1=0,1-q-q2=0,且pq≠1,求的值.解:由p2-p-1=0及1-q-q2=0,可知p≠0,q≠0又∵pq≠1,∴∴1-q-q2=0可变形为的特征所以p与是方程x 2- x -1=0的两个不相等的实数根则根据阅读材料所提供的方法,完成下面的解答.已知:2m2-5m-1=0,,且m≠n,求:的值.6. (市北区二模)【阅读材料】完成一件事有两类不同的方案,在第一类方案中有m种不同的方法,在第二类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法,这是分类加法计数原理;完成一件事需要两个步骤,做第一步有m种不同的方法,做第二步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法,这就是分步乘法计数原理.【问题探究】完成沿图1的街道从A点出发向B点行进这件事(规定必须向北走,或向东走),会有多少种不同的走法?(1)根据材料中的原理,从A点到M点的走法共有(1+1)=2种.从A点到C点的走法:①从A点先到N点再到C点有1种;②从A点先到M点再到C点有2种,所以共有(1+2)=3种走法.依次下去,请求出从A点出发到达其余交叉点的走法数,将数字填入图2的空圆中,并回答从A点出发到B点的走法共有多少种?(2)运用适当的原理和方法,算出如果直接从C点出发到达B点,共有多少种走法?2请仿照图2画图说明.【问题深入】(3)在以上探究的问题中,现由于交叉点C道路施工,禁止通行,求从A点出发能顺了到达BB点的走法数?说明你的理由.7.阅读:我们知道,在数轴上,x=1表示一个点,而在平面直角坐标系中,x=1表示一条直线;我们还知道,以二元一次方程2x-y+1=0的所有解为坐标的点组成的图形就是一次函数y=2x+1的图象,它也是一条直线,如图①.观察图①可以得出:直线x=1与直线y=2x+1的交点P的坐标(1,3)就是方程组的解,所以这个方程组的解为在直角坐标系中,x≤1表示一个平面区域,即直线x=1以及它左侧的部分,如图②;y≤2x+1也表示一个平面区域,即直线y=2x+1以及它下方的部分,如图③. ①②③回答下列问题:(1)在直角坐标系中,用作图象的方法求出方程组的解;(2)用阴影表示,所围成的区域.38. 我们学习过二次函数图象的平移,如:将二次函数的图象向左平移2个单位长度,再向下平移4个单位长度,
上传时间:2023-04-30 页数:10
285人已阅读
(5星级)
圆的基本概念和性质—知识讲解(基础) 【学习目标】1.知识目标:在探索过程中认识圆,理解圆的本质属性;2.能力目标:了解圆及其有关概念,理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,理解概念之间的区别和联系;3.情感目标:通过圆的学习养成学生之间合作的习惯.【要点梳理】要点一、圆的定义及性质1. 圆的定义 356996 概念、性质的要点回顾(1)动态:如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作⊙O,读作圆O.要点诠释: ①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可; ②圆是一条封闭曲线.(2)静态:圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.要点诠释: ①定点为圆心,定长为半径;②圆指的是圆周,而不是圆面;③强调在一个平面内是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.2.圆的性质 ①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心; ②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆的对称轴.要点诠释:①圆有无数条对称轴; ②因为直径是弦,弦又是线段,而对称轴是直线,所以不能说圆的对称轴是直径,而应该说圆的对称轴是直径所在的直线.3.两圆的性质 两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线).要点二、与圆有关的概念1. 弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.1弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.证明:连结OC、OD ∵AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取=号) ∴直径AB是⊙O中最长的弦.2. 弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作圆弧AB或弧AB.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.356996 概念、性质的要点回顾4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.【典型例题】类型一、圆的定义1.(2014秋•邳州市校级月考)如图所示,BD,CE是△ABC的高,求证:E,B,C,D四点在同一个圆上.2【思路点拨】要证几个点在同一个圆上,就是证明这几个点到同一点的距离都相等即可.【答案与解析】证明:如图所示,取BC的中点F,连接DF,EF.∵BD,CE是△ABC的高,∴△BCD和△BCE都是直角三角形.∴DF,EF分别为RtBCD△和RtBCE△斜边上的中线,∴DF=EF=BF=CF.∴E,B,C,D四点在以F点为圆心,BC为半径的圆上.【总结升华】要证几个点在同一个圆上,只能依据圆的定义,去说明这些点到平面内某一点的距离相等.举一反三:【变式】下列命题中,正确的个数是( ) ⑴直径是弦,但弦不一定是直径; ⑵半圆是弧,但弧不一定是半圆; ⑶半径相等且圆心不同的两个圆是等圆 ; ⑷一条弦把圆分成的两段弧中,至少有一段是优弧.A.1个 B.2个 C.3个 D.4个【答案】⑴、⑵、⑶是正确的,⑷是不正确的.故选C.类型二、圆及有关概念2.判断题(对的打√,错的打×,并说明理由)①半圆是弧,但弧不一定是半圆;()②弦是直径;()③长度相等的两段弧是等弧;()④直径是圆中最长的弦. ()【答案】①√ ②× ③×④√.【解析】①因为半圆是弧的一种,弧可分为劣弧、半圆、优弧三种,故正确;②直径是弦,但弦不一定都是直径,只有过圆心的弦才是直径,故错;③只有在同圆或等圆中,长度相等的两段弧才是等弧,故错
上传时间:2023-04-30 页数:5
285人已阅读
(5星级)
《一元二次方程》全章复习与巩固—巩固练习(提高)【巩固练习】一、选择题1. 关于x的一元二次方程(a-1)x2+x+|a|-1=0的一个根是0,则实数a的值为()A.-1B.0 C.1D.-1或12.已知a是方程x2+x﹣1=0的一个根,则22211aaa的值为()A.152B.152C.﹣1 D.13.(2015•德州)若一元二次方程x2+2x+a=0的有实数解,则a的取值范围是() A.a<1B.a≤4C.a≤1D.a≥14.已知关于x的方程2(2)230mxmxm有实根,则m的取值范围是()A.2mB.6m且2mC.6mD.6m5.如果是、是方程2234xx的两个根,则22的值为()A.1 B.17 C.6.25 D.0.256.(2016•台州)有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()A.x(x1﹣)=45B.x(x+1)=45C.x(x1﹣)=45D.x(x+1)=457. 方程x2+ax+1=0和x2-x-a=0有一个公共根,则a的值是() A.0 B.1 C.2 D.38. 若关于x的一元二次方程的两个实数根分别是,且满足.则k的值为()A.-1或 B.-1 C. D.不存在二、填空题9.关于x的方程2()0axmb的解是x1=-2,x2=1(a,m,b均为常数,a≠0),则方程2(2)0axmb的解是 .10.已知关于x的方程x2+2(a+1)x+(3a2+4ab+4b2+2)=0有实根,则a、b的值分别为.11.已知α、β是一元二次方程2430xx的两实数根,则(α-3)(β-3)=________.12.当m=_________时,关于x的方程是一元二次方程;当m=_________时,此方程是一元一次方程. 13.把一元二次方程3x2-2x-3=0化成3(x+m)2=n的形式是____________;若多项式x2-ax+2a-3是一个完全平方式,则a=_________.14.(2015•绥化)若关于x的一元二次方程ax2+2x﹣1=0无解,则a的取值范围是.115.已知,那么代数式的值为________.16.当x=_________时,既是最简二次根式,被开方数又相同. 三、解答题17. (2016•南充)已知关于x的一元二次方程x26x﹣+(2m+1)=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.18.设(a,b)是一次函数y=(k-2)x+m与反比例函数nyx的图象的交点,且a、b是关于x的一元二次方程22(3)(3)0kxkxk的两个不相等的实数根,其中k为非负整数,m、n为常数.(1)求k的值;(2)求一次函数与反比例函数的解析式.19. 长沙市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售. (1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?20.已知某项工程由甲、乙两队合做12天可以完成,共需工程费用13 800元,乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的2倍少10天,且甲队每天的工程费用比乙队多150元.(1)甲、乙两队单独完成这项工程分别需要多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应该选择哪个工程队?请说明理由.【答案与解析】一、选择题1.【答案】A;【解析】先把x=0代入方程求出a的值,然后根据二次项系数不能为0,把a=1舍去.2.【答案】D;【解析】先化简22211aaa,由a是方程x2+x﹣1=0的一个根,得a2+a﹣1=0,则a2+a=1,再整体代入即可.2解:原式=2(1)(1)(1)aaaaa=1(1)aa,∵a是方程x2+x﹣1=0的
上传时间:2023-04-30 页数:5
285人已阅读
(5星级)
【巩固练习】一、选择题1.计算106×(102)3÷104之值为( ).A.108B.109C.1010D.10122.(2015•永州)在数轴上表示数﹣1和2014的两点分别为A和B,则A和B两点间的距离为() A.2013B.2014C.2015D.20163.下列语句中,正确的个数是( ).①一个数与它的相反数的商为-1;②两个有理数之和大于其中任意一个加数;③若两数之和为正数,则这两个数一定都是正数;④若0mn,则mnnm.A.0B.1C.2D.34.已知||5m|,||2n,||mnnm,则mn的值是( ).A.-7B.-3C.-7或-3D.±7或±35.将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的0cm、15cm分别对应数轴上的3.6x和,则( ).A.910x B.1011x C.1112xD.1213x6. 如图:数轴上标出若干个点,每相邻两点相距1个单位,点A、B、C、 D对应的数分别是整数a,b,c,d,且b-2a=9,那么数轴的原点对应点是().A.A点B.B点 C.C点D.D点7.有理数a,b,c的大小关系如图:则下列式子中一定成立的是( ).A.0abcB.abcC.acacD.bcca8.记12nnSaaa…,令12nnSSSTn…,称nT为1a,2a,…,na这列数的理想数.已知1a,2a,…,500a的理想数为2004,那么8,1a,2a,…,500a的理想数为( ). A.2004B.2006C.2008D.2010二、填空题9.(2015•烟台)如图,数轴上点A、B所表示的两个数的和的绝对值是.10.2011年成市承接产业转移示范区建设成效明显,第一季度完成固定资产投资238亿元,用科学记数法可记作________元.111.一种零件的尺寸在图纸上是0.050.027(单位:mm),表示这种零件加工要求最大不超过________,最小不小于________.12.(2016•巴中)|﹣0.3|的相反数等于 .13.如图,有理数,ab对应数轴上两点A,B,判断下列各式的符号:ab________0;ab________0;()()________abab0;2(1)abab________0.14.已知,,abc满足()()()0,0abbccaabc,则代数式abcabc的值是.15.某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃.若该地地面温度为21℃,高空某处温度为-39℃,则此处的高度是千米.16.观察下列算式:23451 ,24462,25473,24846,请你在观察规律之后并用你得到的规律填空:250___________.三、 解答题17.(2016春•新泰市校级月考)计算:(1)24+(﹣22)﹣(+10)+(﹣13)(2)(﹣1.5)+4+2.75+(﹣5)(3)(﹣8)+(﹣7.5)+(﹣21)+(+3)(4)(﹣24)×(﹣++)18.(2015•顺义区一模)居民用电计费实行一户一表政策,以年为周期执行阶梯电价,即:一户居民全年不超过2880度的电量,执行第一档电价标准为0.48元/度;全年用电量在2880度到4800度之间(含4800),超过2880度的部分,执行第二档电价标准为0.53元/度;全年用电量超过4800度,超过4800度的部分,执行第三档电价标准为0.78元/度.小敏家2014年用电量为3000度,则2014年小敏家电费为多少元?19.已知三个互不相等的有理数,即可以表示为1,a+b,a的形式,又可表示为0,ba,b的形式,且x的绝对值为2,求200820092()()()ababababx的值. 20.一粒米微不足道,平时总会在饭桌上毫不经意地掉下几粒,甚至有些挑食的同学会把整碗米饭倒掉.针对这种浪费粮食现象,老师组织同学们进行了实际测算,称得500粒大米约重10克.现在请你来计算(1)一粒大米重约多少克?(2)按我国现有人口13亿,每年365天,每人每天三餐计算,若每人每餐节约一粒大米,一年大约能节约大米多少千克?(用科学记数法表示)2(3)假若我们把一年节约的大米卖成钱,按2元∕千克计算,可卖得人民币多少元?(用科学记数法表示)(4)对于因贫困而失学的儿童,学费按每
上传时间:2023-04-30 页数:5
285人已阅读
(5星级)
5.3 简单的轴对称图形◆基础训练一、选择题1.下列图形中,不是轴对称图形的是().A.角 B.等边三角形C.线段 D.平行四边形2.下列图形中,是轴对称图形的有()个.①直角三角形,②线段,③等边三角形,④正方形,⑤等腰三角形,⑥圆,⑦直角.A.4个 B.3个 C.5个D.6个3.下列说法正确的是().A.轴对称图形是两个图形组成的B.等边三角形有三条对称轴C.两个全等的三角形组成一个轴对称图形D.直角三角形一定是轴对称图形二、填空题4.如图,CD⊥OA,CE⊥OB,D、E为垂足.(1)若∠1=∠2,则有___________;(2)若CD=CE,则有___________.5.等腰三角形的两内角的比为1:4,则底角的度数为_________.三、解答题6.如图,在△ABC中,BC=10,边BC的垂直平分线分别交AB,BC于点E和D,BE=6,求△BCE的周长.7.如图,已知在AB=AC,DB=DC,则AD⊥BC,为什么?◆能力提高一、填空题8.如图,已知∠C=90°,∠1=∠2,若BC=10,BD=6,则点D到边AB的距离为_____.9.在△ABC中,AB=AC,BC=5,作AB的垂直平分线交另一腰AC于D,连BD,若△BCD周长是17cm,则腰长是________.二、解答题10.如图,已知△ABD与△AEC都是等边三角形,求证:BE=DC.11.如图,在△ABC中,AB=AC,∠BAC=120°,D、F分别为AB、AC的中点,DE⊥AB,GF⊥AC,E、G在BC上,BC=15cm,求EG的长度.12.如图,已知∠AOB和∠AOB内一点P,你能在OA和OB边上各找一点Q和R,使得由P、Q、R三点组成的三角形周长最小吗?参考答案1.D2.D3.B4.(1)DC=EC;(2)∠1=∠25.30°或80°6.227.证明△ABD≌△ACD8.49.12cm10.证明△ADC≌△ABE11.连接AE、AG,则AE=BE,AG=CG,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°∴∠AEG=∠AGE=60°,∴△AEG为等边三角形,∴AE=EG=AG=BE=CE,∴EG=BC=5cm.12.作P点关于OB、OA的对称点P1、P2,连接P1P2,与OB交于R,与OA交于Q.
上传时间:2023-04-30 页数:4
284人已阅读
(5星级)
中考冲刺:数形结合问题—知识讲解(提高)【中考展望】1.用数形结合的思想解题可分两类: (1)利用几何图形的直观性表示数的问题,它常借用数轴、函数图象等;(2)运用数量关系来研究几何图形问题,常需要建立方程(组)或建立函数关系式等.2. 热点内容:在初中教材中,数的常见表现形式为: 实数、代数式、函数和不等式等,而形的常见表现形式为: 直线型、角、三角形、四边形、多边形、圆、抛物线、相似、勾股定理等.在直角坐标系下,一次函数的图象对应着一条直线,二次函数的图象对应着一条抛物线,这些都是初中数学的重要内容.特别是二次函数,不仅是学生学习的难点之一,同时也使数形结合的思想方法在中学数学中得到最充分体现.在平面直角坐标系中,二次函数图象的开口方向、顶点坐标、对称轴以及与坐标轴的交点等都与其系数a,b,c密不可分.事实上,数a 决定抛物线的开口方向, b 与a 一起决定抛物线的对称轴位置, c 决定了抛物线与y 轴的交点位置,与a、b 一起决定抛物线顶点坐标的纵坐标,抛物线的平移的图形关系只是顶点坐标发生变化,其实从代数的角度看是b、c 的大小变化.【方法点拨】数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含以形助数和以数解形两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长,是优化解题过程的重要途径之一,是一种基本的数学方法.数形结合问题,也可以看作代数几何综合问题.从内容上来说,是把代数中的数与式、方程与不等式、函数,几何中的三角形、四边形、圆等图形的性质,以及解直角三角形的方法、图形的变换、相似等内容有机地结合在一起,同时也会融入开放性、探究性等问题.经常考查的题目类型主要有坐标系中的几何问题(简称坐标几何问题),以及图形运动过程中求函数解析式的问题等.解决这类问题,第一,需要认真审题,分析、挖掘题目的隐含条件,翻译并转化为显性条件;第二,要善于将复杂问题分解为基本问题;第三,要善于联系与转化,进一步得到新的结论.尤其要注意的是,恰当地使用综合分析法及方程与函数的思想、转化思想、数形结合思想、分类与整合思想等数学思想方法,能更有效地解决问题.【典型例题】类型一、 利用数形结合探究数字的变化规律 1.如图,网格中的每个四边形都是菱形.如果格点三角形ABC的面积为S,按照如图所示方式得到的格点三角形A1B1C1的面积是7S,格点三角形A2B2C2的面积是19S,那么格点三角形A3B3C3的面积为(). A.39S B. 36SC.37S D.43S1【思路点拨】设网络中每个小菱形的边长为一个单位,由于ABC的面积为S,则小菱形的面积为2S;从图上观察可知三角形A2B2C2三个顶点分别在边长为3个单位的菱形的内部,其中一顶点与菱形重合,另两顶点在与前一顶点不相连的两边上,三角形AnBnCn三顶点分别在边长为(2n+1)个单位的菱形的内部,此菱形与三角形AnBnCn不重合的部分为三个小三角形;由此得到关于三角形AnBnCn面积公式,把n=3代入即可求出三角形A3B3C3的面积.【答案】C.【解析】网络中每个小菱形的边长为一个单位,由于ABC的面积为S,则小菱形的面积为2S;从图上观察可知三角形A2B2C2三个顶点分别在边长为3个单位的菱形的内部,其中一顶点与菱形重合,另两顶点在与前一顶点不相连的两边上,三角形AnBnCn三顶点分别在边长为2n+1个单位的菱形的内部,此菱形与三角形AnBnCn不重合的部分为三个小三角形;而三角形AnBnCn面积=边长为2n+1个单位的菱形面积-三个小三角形面积=2S(2n+1)2-(21)2(21)(1)2(1)2222nnsnnsnns,=S(8n2+8n+2-2n2-n-2n2-3n-1-n2-n),=S(3n2+3n+1),把n=3分别代入上式得:S3=S(3×32+3×3+1)=37S.故选C.【总结升华】此题主要考查菱形的性质,也考查了学生的读图能力以及探究问题的规律并有规律解决问题的能力.举一反三:【变式】(2016•潍坊)在平面直角坐标系中,直线l:y=x1﹣与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn1﹣,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点Bn的坐标是. 2【答案】(2n1﹣,2n1﹣)【解析】解:∵y=x1﹣与x轴交于点A1,∴A1点坐标(1,0),∵四边形A1B1C1O是正方形,∴B1坐标(1,1),∵C1A2∥x轴,∴A2坐标(2,1),∵四边形A2B2C2C1是正方形,∴B2坐标(2,3)
上传时间:2023-04-30 页数:9
284人已阅读
(5星级)
【巩固练习】一.选择题1. (2016•巴彦淖尔)下列运算正确的是()A.﹣2x2y•3xy2=6﹣x2y2 B.(﹣x2﹣y)(x+2y)=x24﹣y2C.6x3y2÷2x2y=3xy D.(4x3y2)2=16x9y42.若,则值是().A.==1B.==2C.=1,=2D.=2,=13.的结果是(). A.8B.-8C.2D.84.下列计算中错误的是()A.B.C.D.5. 已知与一个多项式之积是,则这个多项式是()A. B.C.D.6. 计算除以后,得商式和余式分别为()A.商式为3,余式为B.商式为3,余式为8C.商式为3+8,余式为 D.商式为3+8,余式为0二.填空题7. (2016秋•巴中校级期中)计算:=____________.8. __________,__________,______.9. (1)已知=3,=2,__________.(2)已知=6,=8,___________.10. 已知A是关于的四次多项式,且A÷=B,那么B是关于的_______次多项式.11. 若M,那么整式M=____________.12.若=3,=6,=12,,,之间的数量关系是________.三.解答题113.先化简,再求值:,其中=2,=-3.14.(北京校级月考)(﹣4a37a﹣3b2+12a2b)÷(﹣2a)2.15. 是否存在常数、使得能被整除?如果存在,求出、的值,否则请说明理由.【答案与解析】一.选择题1.【答案】C;【解析】﹣2x2y•3xy2=6﹣x3y3,故选项A错误;(﹣x2﹣y)(x+2y)=﹣x24﹣xy4﹣y2,故选项B错误;6x3y2÷2x2y=3xy,故选项C正确;(4x3y2)2=16x6y4,故选项D错误故选:C.2. 【答案】A; 【解析】,所以,,=1.3. 【答案】A; 【解析】.4. 【答案】D; 【解析】.5. 【答案】C; 【解析】这个多项式为.6. 【答案】A; 【解析】×商式+余式=.二.填空题7. 【答案】﹣16a2c+4ab+1; 【解析】解:原式==16﹣a2c+4ab+1.8. 【答案】; 【解析】.29. 【答案】(1);(2); 【解析】;.10.【答案】三;11.【答案】; 【解析】M=.12.【答案】; 【解析】,所以.三.解答题13.【解析】解:原式=== 当=2,=-3时,原式=.14.【解析】解:(﹣4a37a﹣3b2+12a2b)÷(﹣2a)2=(﹣4a37a﹣3b2+12a2b)÷4a2=a﹣﹣ab2+3b.15. 【解析】解:设 由等式左右两边对应系数相等可得:,,, 解得:,所以、是存在的.3
上传时间:2023-04-30 页数:3
284人已阅读
(5星级)
2021年天津市初中毕业生学业考试试卷数学一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算的结果等于()A. B. 2C. D. 15【答案】C【解析】【分析】根据有理数的乘法法则运算即可求解.【详解】解:由题意可知:,故选:C.【点睛】本题考查了有理数的乘法法则,属于基础题,运算过程中注意符号即可.2. 的值等于()A. B. C. 1D. 2【答案】A【解析】【分析】根据30°的正切值直接求解即可.【详解】解:由题意可知,,故选:A.【点睛】本题考查30°的三角函数,属于基础题,熟记其正切值即可.3. 据2021年5月12日《天津日报》报道,第七次全国人口普查数据公布,普查结果显示,全国人口共141178万人.将141178用科学记数法表示应为()A. B. C. D. 【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:141178=1.41178×105,故选:B.【点睛】此题考查科学记数法的表示方法,关键是确定a的值以及n的值.4. 在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C. D. 【答案】A【解析】【分析】根据轴对称图形的概念对各项分析判断即可得解.【详解】A.是轴对称图形,故本选项符合题意;B.不是轴对称图形,故本选项不符合题意;C.不是轴对称图形,故本选项不符合题意;D.不是轴对称图形,故本选项不符合题意.故选A.【点睛】本题考查判断轴对称图形,理解轴对称图形的概念是解答的关键.5. 如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A. B. C. D. 【答案】D【解析】【分析】根据三视图中的主视图定义,从前往后看,得到的平面图形即为主视图.【详解】解:从正面看到的平面图形是3列小正方形,从左至右第1列有1个,第2列有2个,第3列有2个,故选:D.【点睛】本题主要考查了组合体的三视图,解题的关键是根据主视图的概念由立体图形得到相应的平面图形.6. 估算的值在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间【答案】C【解析】【分析】估算无理数的大小.【详解】因为,所以的值在4和5之间.故选C.7. 方程组的解是()A. B. C. D. 【答案】B【解析】【分析】直接利用加减消元法解该二元一次方程组即可.【详解】,②-①得:,即,∴.将代入①得:,∴.故原二元一次方程组的解为.故选B.【点睛】本题考查解二元一次方程组.掌握解二元一次方程组的方法和步骤是解答本题的关键.8. 如图,的顶点A,B,C的坐标分别是,则顶点D的坐标是()A. B. C. D. 【答案】C【解析】【分析】根据平行四边形性质以及点的平移性质计算即可.【详解】解:∵四边形ABCD是平行四边形,点B的坐标为(-2,-2),点C的坐标为(2,-2),∴点B到点C为水平向右移动4个单位长度,∴A到D也应向右移动4个单位长度,∵点A的坐标为(0,1),则点D的坐标为(4,1),故选:C.【点睛】本题主要考查平行四边形的性质,以及平移的相关知识点,熟知点的平移特点是解决本题的关键.9. 计算的结果是()A. 3B. C. 1D. 【答案】A【解析】【分析】先根据分式的减法运算法则计算,再提取公因式3,最后约分化简即可.【详解】原式,.故选A.【点睛】本题考查分式的减法.掌握分式的减法运算法则是解答本题你的关键.10. 若点都在反比例函数的图象上,则的大小关系是( )A. B. C. D. 【答案】B【解析】【分析】将A、B、C三点坐标代入反比例函数解析式,即求出的值,即可比较得出答案.【详解】分别将A、B、C三点坐标代入反比例函数解析式得:、、.则.故选B.【点睛】本题考查比较反比例函数值.掌握反比例函数图象上的点的坐标满足其解析式是解答本题的关键.11. 如图,在中,,将绕点C逆时针旋转得到,点A,B的对应点分别为D,E,连接.当点A,D,E在同一条直线上时,下列结论一定正确的是()A. B. C. D. 【答案】D【解析】【分析】由旋转可知,即可求出,由于,则可判断,即A选项错误;由旋转可知,由于,即推出,即B选项错误;由三角形三边关系可知,即可推出,即C选项错误;由旋转可知,再由,即可证明为等边三角形,即推出.即可求出,即证明,即D选项正确;【详解】由旋转可知,∵点A,D,E在同一条直线上,∴,∵,∴,故A选项错误,不符合题意;由旋转可知,∵为钝角,∴,∴,故B选项错误,不
上传时间:2023-05-08 页数:32
283人已阅读
(5星级)
2021年柳州市初中学业水平考试与高中阶段学校招生考试数学(考试时间:120分钟满分:120分)Ⅰ第卷一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的)1. 在实数3,,0,中,最大的数为()A. 3B. C. 0D. 【答案】A【解析】【分析】根据正数大于零,负数小于零,正数大于一切负数,两个负数比较大小,绝对值大的反而小,两个正数比较大小,绝对值大数就大,据此判断即可.【详解】根据有理数的比较大小方法,可得: ,因此最大的数是:3,故选:A.【点睛】本题考查了实数的比较大小,解答此题的关键在于明确:正数>0>负数.2. 如下摆放的几何体中,主视图为圆的是()A. B. C. D. 【答案】D【解析】【分析】逐项分析,根据三视图的定义,找出主视图为圆的选项.【详解】A. 主视图为三角形,不符合题意;B. 主视图为矩形,不符合题意;C. 主视图为正方形,不符合题意;D. 主视图为圆,符合题意.故选D.【点睛】本题考查了三视图的知识点,熟知主视图的定义和画三视图的规则是解题的关键.3. 柳州市大力发展新能源汽车业,仅今年二月宏光MINIEV销量就达17000辆,用科学记数法将数据17000表示为()A. B. C. D. 【答案】C【解析】【分析】用科学计数法表示出即可.【详解】.故选C.【点睛】本题考查了科学计数法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原来的数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.4. 以下四个标志,每个标志都有图案和文字说明,其中的图案是轴对称图形是()A. B. C. D. 【答案】D【解析】【分析】根据轴对称图形的定义判断即可【详解】∵A,B,C都不是轴对称图形,∴都不符合题意;D是轴对称图形,符合题意,故选D.【点睛】本题考查了轴对称图形的定义,准确理解轴对称图形的定义是解题的关键.5. 以下调查中,最适合用来全面调查的是()A. 调查柳江流域水质情况B. 了解全国中学生的心理健康状况C. 了解全班学生的身高情况D. 调查春节联欢晚会收视率【答案】C【解析】【分析】逐项分析,找出适合全面调查的选项即可.【详解】A.调查柳江流域水质情况,普查不切实际,适用采用抽样调查,不符合题意;B.了解全国中学生的心理健康状况,调查范围广,适合抽样调查,不符合题意;C.了解全班学生的身高情况,适合普查,符合题意;D.调查春节联欢晚会收视率,调查范围广,适合抽样调查,不符合题意.故选C.【点睛】本题考查的是全面调查与抽样调查;在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.理解全面调查与抽样调查的适用范围是解题的关键.6. 如图,在菱形中,对角线,则的面积为()A. 9B. 10C. 11D. 12【答案】B【解析】【分析】菱形的对角线互相垂直平分,故的面积为对角线的一半的乘积的.【详解】是菱形的面积故选B.【点睛】本题考查了菱形的性质及三角形面积,理解是直角三角形是解题的关键.7. 如图,有4张形状大小质地均相同的卡片,正面印有速度滑冰、冰球、单板滑雪、冰壶四种不同的图案,背面完全相同,现将这4张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面怡好是冰壶项目图案的概率是()A. B. C. D. 【答案】A【解析】【分析】事件所有可能的结果有4种,抽出的卡片正面恰好是冰壶项目图案的结果有1种,据此利用概率公式求解即可.【详解】事件所有可能的结果有4种,抽出的卡片正面恰好是冰壶项目图案的结果有1种,所以抽出的卡片正面怡好是冰壶项目图案的概率是.故选:A.【点睛】本题考查了等可能事件的概率,根据概率计算公式,必须知道所有可能的结果及事件发生的结果.8. 下列计算正确的是()A. B. C. D. 【答案】C【解析】【分析】根据二次根式的运算性质求解,逐项分析即可【详解】A. ,不是同类二次根式,不能合并,不符合题意;B. ,不是同类二次根式,不能合并,不符合题意;C. 符合题意;D., 不是同类二次根式,不能合并,不符合题意.故选C.【点睛】本题主要考查二次根式的混合运算,掌握二次根式的乘法法则,是解题的关键.9. 某校九年级进行了3次数学模拟考试,甲、乙、丙三名同学的平均分为及方差如右表所示,那么这三名同学数学成绩最稳定的是()甲乙丙91919162454A. 甲B. 乙C. 丙D. 无法确定【答案】A【解析】【分析】先比较平均成绩,当平均成绩一致时,比较方差,方差小的波动小,成绩更稳定.【详解】甲、乙、丙的成绩的平均分都是91,故比较它们的方差
上传时间:2023-05-08 页数:27
282人已阅读
(5星级)
中考总复习:四边形综合复习—知识讲解(基础)【考纲要求】1.探索并了解多边形的内角和与外角和公式,了解正多边形的概念.2.掌握平行四边形、矩形、菱形、正方形、梯形、直角梯形、等腰梯形的概念和性质,了解它们之间的关系;了解四边形的不稳定性.3.探索并掌握平行四边形的有关性质和四边形是平行四边形的条件.4.探索并掌握矩形、菱形、正方形的有关性质和四边形是矩形、菱形、正方形的条件.5.探索并了解等腰梯形的有关性质和四边形是等腰梯形的条件.6.通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面, 并能运用这几种图形进行简单的镶嵌设计.【知识网络】【考点梳理】考点一、四边形的相关概念1.多边形的定义:在平面内,由不在同一直线上的一些线段首尾顺次相接组成的封闭图形叫做多边形.2.多边形的性质:(1)多边形的内角和定理:n边形的内角和等于(n-2)·180°;(2)推论:多边形的外角和是360°; (3)对角线条数公式:n边形的对角线有条;(4)正多边形定义:各边相等,各角也相等的多边形是正多边形.3.四边形的定义:同一平面内,由不在同一条直线上的四条线段首尾顺次相接组成的图形叫做四边形.4.四边形的性质:(1)定理:四边形的内角和是360°; (2)推论:四边形的外角和是360°.考点二、特殊的四边形1.平行四边形及特殊的平行四边形的性质12. 平行四边形及特殊的平行四边形的判定【要点诠释】面积公式:S菱形 =ab=ch(a、b为菱形的对角线,c为菱形的边长,h为c边上的高).S平行四边形 =ah(a为平行四边形的边,h为a上的高).考点三、梯形1.梯形的定义:一组对边平行而另一组对边不平行的四边形叫做梯形.(1)互相平行的两边叫做梯形的底;较短的底叫做上底,较长的底叫做下底.(2)不平行的两边叫做梯形的腰.(3)梯形的四个角都叫做底角.2.直角梯形:一腰垂直于底的梯形叫做直角梯形.3.等腰梯形:两腰相等的梯形叫做等腰梯形.4.等腰梯形的性质: (1)等腰梯形的两腰相等; (2)等腰梯形同一底上的两个底角相等. (3)等腰梯形的对角线相等.5.等腰梯形的判定方法: (1)两腰相等的梯形是等腰梯形(定义);(2)同一底上的两个角相等的梯形是等腰梯形;(3)对角线相等的梯形是等腰梯形.6.梯形中位线:连接梯形两腰中点的线段叫梯形的中位线.27.面积公式: S=(a+b)h(a、b是梯形的上、下底,h是梯形的高).考点四、平面图形1.平面图形的镶嵌的定义:用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠地铺成一片,这就是平面图形的镶嵌,又称做平面图形的密铺.2.平面图形镶嵌的条件: (1)同种正多边形镶嵌成一个平面的条件:周角是否是这种正多边形的一个内角的整倍数.在正多边形里只有正三角形、正四边形、正六边形可以镶嵌.(2)n种正多边形组合起来镶嵌成一个平面的条件: ①n个正多边形中的一个内角的和的倍数是360°; ②n个正多边形的边长相等,或其中一个或n个正多边形的边长是另一个或n个正多边形的边长的整数倍.【典型例题】类型一、多边形及其镶嵌1. 一个同学在进行多边形内角和计算时,求得的内角和为1125°,当发现错了之后,重新检查,发现少了一个内角.少了的这个内角是_________度,他求的是_________边形的内角和. 【思路点拨】一个多边形的内角和能被180°整除,本题内角和1125°除以180°后有余数,则少的内角应和这个余数互补.【答案】135;九.【解析】设这个多边形边数为n,少算的内角度数为x,由题意得:(n-2)·180°=1125°+ x°,∴n=,∵n为整数,0°<x<180°,∴符合条件的x只有135°,解得n=9. 【总结升华】多边形根据内角或外角求边数,或是根据边数求内角或对角线条数等题是重点,只需要记住各公式或之间的联系,并准确计算.举一反三: 【变式】(2015•眉山)一个多边形的外角和是内角和的,这个多边形的边数为()A.5B.6C.7D.8【答案】C.【解析】∵一个多边形的外角和是内角和的,且外角和为360°,∴这个多边形的内角和为900°,即(n﹣2)•180°=900°,解得:n=7,则这个多边形的边数是7,故选C.2.(2015•蓬溪县校级模拟)下列每组多边形均有若干块中,其中不能铺满地面(镶嵌)的一组是()A.正三角形和正方形B.正方形和正六边形C.正三角形和正六边形D.正五边形和正十边形【思路点拨】正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.3【答案】B.【解析
上传时间:2023-04-30 页数:10
282人已阅读
(5星级)
客服
客服QQ:
2505027264
客服电话:
18182295159
微信小程序
微信公众号
回到顶部