免费预览已结束 ,请下载后查看全文
还剩-页可免费阅读, 继续阅读
初中7年级(下册)一元一次不等式的解法(基础)巩固练习.doc简介:
一元一次不等式的解法(基础)巩固练习【巩固练习】一、选择题1.下列各式中,是一元一次不等式的是()A.5+4>8B.2x-1C.2x≤5D.-3x≥0 2.已知a>b,则下列不等式正确的是A.-3a>-3bB.C.3-a>3-bD.a-3>b-33.由x>y得ax<ay的条件应是A.a>0B.a<0C.a≥0 D.b≤04.(2015•西宁)不等式3x≤2(x﹣1)的解集为()A.x≤﹣1B.x≥﹣1C.x≤﹣2D.x≥﹣25.(山东烟台)不等式的非负整数解有()A. 1个B.2个 C.3个 D.4个 6.(江西南昌)不等式的解集在数轴上表示正确的是()二、填空题7.用>或<填空,并说明是根据不等式的哪条基本性质: (1)如果x+2>5,那么x_______3;根据是_______. (2)如果,那么a_______;根据是________. (3)如果,那么x________;根据是________.(4)如果x-3<-1,那么x_______2;根据是________.8. (2015•包河区二模)不等式>x﹣1的解集是 .9. 代数式的值不小于代数式的值,则的取值范围是 .10.不等式的非负整数解为.11.满足不等式的最小整数是 .12.若m>5,试用m表示出不等式(5-m)x>1-m的解集______.三、解答题13.(2014春•东昌府区期中)(1)解不等式3(2y﹣1)>1﹣2(y+3);(2)解不等式≥+1,并把它的解集在数轴上表示出来.14.a取什么值时,代数式3-2a的值: (1)大于1? (2)等于1? (3)小于1?115.y取什么值时,代数式2y-3的值:(1)大于5y-3的值?(2)不大于5y-3的值?16.求不等式64-11x>4的正整数解. 【答案与解析】一、选择题1. 【答案】C;【解析】考查一元一次不等式的概念;2. 【答案】D;【解析】考查一元一次不等式的性质;3. 【答案】B;【解析】考查一元一次不等式的性质;4. 【答案】C; 【解析】去括号得,3x≤2x﹣2,移项、合并同类项得,x≤﹣2,故选:C.5. 【答案】C;【解析】先求得解集为,所以非负整数解为:0,1,2;6. 【答案】B;【解析】解原不等式得解集:.二、填空题7. 【答案】(1)>,不等式基本性质1;(2)>,不等式基本性质3; (3)<,不等式基本性质2;(4)<,不等式基本性质1;8.【答案】 x<4 ;【解析】去分母得1+2x>3x3﹣,移项得2x3x﹣>﹣31﹣,合并得﹣x>﹣4,系数化为1得x<4. 9.【答案】;【解析】由题意得,解得10.【答案】0,1,2;【解析】解不等式得11.【答案】5;【解析】不等式的解集为,所以满足不等式的最小整数是5.12.【答案】. 【解析】∵,∴,所以(5-m)x>1-m,可得:三、解答题13.【解析】解:(1)去括号,得:6y﹣3>1﹣2y﹣6,移项,得:6y+2y>1﹣6+3,2合并同类项,得:8y>﹣2,系数化成1得:y>﹣;(2)去分母,得:﹣2(2x﹣1)≥﹣3(2x+1)+6,去括号,得:﹣4x+2≥﹣6x﹣3+6,移项,得:﹣4x+6x≥﹣3+6﹣2,合并同类项,得:2x≥1,系数化为1得:x≥.14.【解析】解:(1)由3-2a>1,得a<1;(2)由3-2a=1,得a =1;(3)由3-2a<1,得a>1.15.【解析】解:(1)由2y-3>5y-3,得y<0;(2)由2y-3≤5y-3,得y≥0. 16.【解析】 解:先解不等式的解集为x<,所以正整数解为1,2,3,4,5.3
展开>>
下载声明:
1、本文档共3页,其中可免费阅读3页,下载后可查看全部内容。
2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
3、本文档由用户上传,本站不保证内容质量和数量令您满意,可能有诸多瑕疵,付费之前,请先通过免费阅读内容等途径仔细辨别内容交易风险。 如存在严重文不对题之情形,可联系本站下载客服投诉处理。
文档侵权举报电话:18182295159 (电话支持时间:10:00-19:00)。
展开>>
扫码快捷下载 | 账号登录下载
客服
客服QQ:
2505027264
客服电话:
18182295159
微信小程序
微信公众号
回到顶部