首页 / 资源检索
  • 中考数学冲刺:创新、开放与探究型问题--巩固练习(提高).doc

    中考冲刺:创新、开放与探究型问题—巩固练习(提高)【巩固练习】一、选择题1.(2016•重庆校级二模)下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有1个空心小圆圈,第②个图形中一共有6个空心小圆圈,第③个图形中一共有13个空心小圆圈,…,按此规律排列,则第⑦个图形中空心圆圈的个数为()A.61 B.63 C.76 D.782.如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设Pn﹣1Dn﹣2的中点为Dn﹣1,第n次将纸片折叠,使点A与点Dn﹣1重合,折痕与AD交于点Pn(n>2),则AP6的长为()  A.512532B.69352C.614532 D.7113523.下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是()A.495B.497C.501D.503二、填空题4.(2015•合肥校级三模)如图,一个3×2的矩形(即长为3,宽为2)可以用两种不同方式分割成3或6个边长是正整数的小正方形,即:小正方形的个数最多是6个,最少是3个.1(1)一个5×2的矩形用不同的方式分割后,小正方形的个数可以是   个,最少是   个;(2)一个7×2的矩形用不同的方式分割后,小正方形的个数最多是   个,最少是   个;(3)一个(2n+1)×2的矩形用不同的方式分割后,小正方形的个数最多是   个;最少是   个.(n是正整数)5. 一园林设计师要使用长度为4L的材料建造如图1所示的花圃,该花圃是由四个形状、大小完全一样的扇环面组成,每个扇环面如图2所示,它是以点O为圆心的两个同心圆弧和延长后通过O点的两条直线段围成,为使得绿化效果最佳,还须使得扇环面积最大.(1)使图①花圃面积为最大时R-r的值为 ,以及此时花圃面积为 ,其中R、r分别为大圆和小圆的半径;(2)若L=160 m,r=10 m,使图面积为最大时的θ值为 .6.如图所示,已知△ABC的面积1ABCS△,在图(a)中,若11112AABBCCABBCCA,则11114ABCS△;在图(b)中,若22213AABBCCABBCCA,则222ABC13S△;在图(c),若33314AABBCCABBCCA,则333716ABCS△.…按此规律,若88819AABBCCABBCCA,则888ABCS△________.2三、解答题7.(2016•丹东模拟)已知,点D为直线BC上一动点(点D不与点B、C重合),∠BAC=90°,AB=AC,∠DAE=90°,AD=AE,连接CE.(l)如图1,当点D在线段BC上时,求证:①BD⊥CE,②CE=BC﹣CD;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CE、BC、CD三条线段之间的关系;(3)如图3,当点O在线段BC的反向延长线上时,且点A、E分别在直线BC的两侧,点F是DE的中点,连接AF、CF,其他条件不变,请判断△ACF的形状,并说明理由.8.如图(a)、(b)、(c),在△ABC中,分别以AB,AC为边,向△ABC外作正三角形、正四边形、正五边形,BE,CD相交于点O.(1)①如图(a),求证:△ADC≌△ABE;②探究:图(a)中,∠BOC=________;图(b)中,∠BOC=________;图(c)中,∠BOC=________;(2)如图(d),已知:AB,AD是以AB为边向△ABC外所作正n边形的一组邻边;AC,AE是以AC为边向△ABC外所作正n边形的一组邻边.BE,CD的延长相交于点O.①猜想:图(d)中,∠BOC=________________;(用含n的式子表示)②根据图(d)证明你的猜想.9. 如图(a),梯形ABCD中,AD∥BC,∠ABC=90°, AD=9,BC=12,AB=a,在线段BC上任取一点3P(P不与B,C重合),连接DP,作射线.PE⊥DP,PE与

    上传时间:2023-04-30 页数:11

    424人已阅读

    (5星级)

  • 中考地理状元笔记典藏版.pdf

    中考状元笔记 地理初中学霸提升成绩的 16 个习惯 1、记忆习惯。一分钟记忆,把记忆和时间联系起来,这里还含有注意的习惯。一分钟写多少字,读多少字,记多少字,时间明确的时候,注意力一定好。把学习任务和时间联系起来,通过一分钟注意、记忆来培养学习习惯。 2、演讲习惯。让自己会整理、表达自己的思想,演讲是现代人应该具有的能力。 3、读的习惯。读中外名著或伟人传记,与高层次的思想对话,每天读一、两分钟,与大师为伍,很多教育尽在不言中,一旦形成习惯,自己会终生受益。 4、写的习惯。写日记,有话则长,无话则短,通过日记可以看出一个人有没有能力,有没有思想,有没有一以贯之的品质。 5、定计划的习惯。凡事预则利、不预则废。后进生毛病都出在计划性不强,让人家推着走,而优秀的自己长处就在于明白自己想要干什么。 6、预习习惯。让自己学进去,感受学习、探索、增长能力的快乐。所以请各位同学一定要培养自己预习的习惯。 7、适应老师的习惯。自己同时面对各学科教师,长短不齐、在所难免。自己要适应老师,与老师共同进步,不要稍不如意就埋怨环境。 8、大事做不来,小事赶快做的习惯。这也是非常要紧的一个习惯。尖子自己做尖子的事,后进自己别盲目攀比。大的目标够不到,赶快定小的目标。难题做不了, 挑适合你的容易做的题去做。人生最可怕的就是大事做不来,小事不肯做,高不能 成,低不肯就,上得去、下不来。所以要让我们的自己永不言败。 9、自己留作业的习惯。老师留的作业不一定同时适应所有同学。同学们要让自己做到脚踏实地、学有所得,从自己的实际出发,为自己布置作业。 10、错题集的习惯。每次考试之后,90 多分的、50 多分的、30 多分的同学,如何整理错题?扔掉的分数就不要了,这次 30 分,下次 40 分,这就是伟大的成绩。找到可以接受的类型题、同等程度的知识点研究一下提高的办法。整理错题集是很多同学公认的好习惯。 11、出考试题的习惯。自己应该觉得考试不神秘。高中自己应该会出高考试题, 初中自己会出中考试题。 12、筛选资料、总结的习惯。自己要会根据自己实际,选择学习资料。 十二个习惯,不要求齐头并进,每个同学要有自己的特点,让老师以教书为乐, 让自己以学习为快乐。这快乐要建立在养成这些良好习惯的基础上。祝大家更多地享受到学习的快乐!

    上传时间:2023-04-29 页数:132

    532人已阅读

    (5星级)

  • 中考化学状元笔记典藏版.pdf

    中考状元笔记 化学初中学霸提升成绩的 16 个习惯 1、记忆习惯。一分钟记忆,把记忆和时间联系起来,这里还含有注意的习惯。一分钟写多少字,读多少字,记多少字,时间明确的时候,注意力一定好。把学习任务和时间联系起来,通过一分钟注意、记忆来培养学习习惯。 2、演讲习惯。让自己会整理、表达自己的思想,演讲是现代人应该具有的能力。 3、读的习惯。读中外名著或伟人传记,与高层次的思想对话,每天读一、两分钟,与大师为伍,很多教育尽在不言中,一旦形成习惯,自己会终生受益。 4、写的习惯。写日记,有话则长,无话则短,通过日记可以看出一个人有没有能力,有没有思想,有没有一以贯之的品质。 5、定计划的习惯。凡事预则利、不预则废。后进生毛病都出在计划性不强,让人家推着走,而优秀的自己长处就在于明白自己想要干什么。 6、预习习惯。让自己学进去,感受学习、探索、增长能力的快乐。所以请各位同学一定要培养自己预习的习惯。 7、适应老师的习惯。自己同时面对各学科教师,长短不齐、在所难免。自己要适应老师,与老师共同进步,不要稍不如意就埋怨环境。 8、大事做不来,小事赶快做的习惯。这也是非常要紧的一个习惯。尖子自己做尖子的事,后进自己别盲目攀比。大的目标够不到,赶快定小的目标。难题做不了, 挑适合你的容易做的题去做。人生最可怕的就是大事做不来,小事不肯做,高不能 成,低不肯就,上得去、下不来。所以要让我们的自己永不言败。 9、自己留作业的习惯。老师留的作业不一定同时适应所有同学。同学们要让自己做到脚踏实地、学有所得,从自己的实际出发,为自己布置作业。 10、错题集的习惯。每次考试之后,90 多分的、50 多分的、30 多分的同学,如何整理错题?扔掉的分数就不要了,这次 30 分,下次 40 分,这就是伟大的成绩。找到可以接受的类型题、同等程度的知识点研究一下提高的办法。整理错题集是很多同学公认的好习惯。 11、出考试题的习惯。自己应该觉得考试不神秘。高中自己应该会出高考试题, 初中自己会出中考试题。 12、筛选资料、总结的习惯。自己要会根据自己实际,选择学习资料。 十二个习惯,不要求齐头并进,每个同学要有自己的特点,让老师以教书为乐, 让自己以学习为快乐。这快乐要建立在养成这些良好习惯的基础上。祝大家更多地享受到学习的快乐!

    上传时间:2023-04-29 页数:142

    609人已阅读

    (5星级)

  • 中考数学冲刺:代几综合问题(提高).doc

    中考冲刺:代几综合问题(提高)一、选择题1.(2016•鄂州)如图,O是边长为4cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线A﹣B﹣M方向匀速运动,到M时停止运动,速度为1cm/s.设P点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图象可以是()  A.  B. C.D.2. 如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间函数关系的图象大致为(  ) 二、填空题3. 在平面直角坐标系中,点A的坐标为(4,0),点B的坐标为(4,10),点C在y轴上,且△ABC是直角三角形,则满足条件的 C点的坐标为______________.4.(2016•梧州)如图,在坐标轴上取点A1(2,0),作x轴的垂线与直线y=2x交于点B1,作等腰直角三角形A1B1A2;又过点A2作x轴的垂线交直线y=2x交于点B2,作等腰直角三角形A2B2A3;…,如此反复作等腰直角三角形,当作到An(n为正整数)点时,则An的1坐标是______.三、解答题5. 如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm,现有两个动点P,Q分别从点A和点B同时出发,其中点P以1厘米/秒的速度沿AC向终点C运动;点Q以1.25厘米/秒的速度沿BC向终点C运动.过点P作PE∥BC交AD于点E,连接EQ.设动点运动时间为t秒(t>0).(1)连接DP,经过1秒后,四边形EQDP能够成为平行四边形吗?请说明理由;(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行.为什么?(3)当t为何值时,△EDQ为直角三角形. 6.如图,在平面直角坐标系中,四边形OABC是梯形,OA∥BC,点A的坐标为(6,0),点B的坐标为(3,4),点C在y轴的正半轴上.动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒)  (1)求线段AB的长;当t为何值时,MN∥OC?  (2)设△CMN的面积为S,求S与t之间的函数解析式,并指出自变量t的取值范围;S是否有最小值?若有最小值,最小值是多少? 7. 条件:如下图,A、B是直线l同旁的两个定点.2问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明).模型应用:(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是______;(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.8. 如图,四边形OABC是一张放在平面直角坐标系的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=15,OC=9,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作N点.(1)求N点、M点的坐标;(2)将抛物线y=x2﹣36向右平移a(0<a<10)个单位后,得到抛物线l,l经过点N,求抛物线l的解析式;(3)①抛物线l的对称轴上存在点P,使得P点到M、N两点的距离之差最大,求P点的坐标;②若点D是线段OC上的一个动点(不与O、C重合),过点D作DE∥OA交CN于E,设CD的长为m,△PDE的面积为S,求S与m之间的函数关系式,并说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由. 9. 如图,直线y=kx﹣1与x轴、y轴分别交于B、C两点,tan∠OCB=.(1)求B点的坐标和k的值;(2)若点A(x,y)是第一象限内的直线y=kx﹣1上的一个动点.当点A运动过程中,试写出△AOB的面积S与x的函数关系式;(3)探索:在(2)的条件下:①当点A运动到什么位置时,△AOB的面积是;②在①成立的情况下,x轴上是否存在一点P,使△POA是等腰三角形?若存在,

    上传时间:2023-04-30 页数:14

    397人已阅读

    (5星级)

  • 中考数学冲刺:代几综合问题--巩固练习(提高).doc

    中考冲刺:代几综合问题—知识讲解(提高)【巩固练习】一、选择题1.(2016•鄂州)如图,O是边长为4cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线A﹣B﹣M方向匀速运动,到M时停止运动,速度为1cm/s.设P点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图象可以是()A.B. C.D.2. 如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间函数关系的图象大致为( )二、填空题13.在平面直角坐标系中,点A的坐标为(4,0),点B的坐标为(4,10),点C在y轴上,且△ABC是直角三角形,则满足条件的C点的坐标为______________.4.(2016•梧州)如图,在坐标轴上取点A1(2,0),作x轴的垂线与直线y=2x交于点B1,作等腰直角三角形A1B1A2;又过点A2作x轴的垂线交直线y=2x交于点B2,作等腰直角三角形A2B2A3;…,如此反复作等腰直角三角形,当作到An(n为正整数)点时,则An的坐标是   .三、解答题5. 如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm,现有两个动点P,Q分别从点A和点B同时出发,其中点P以1厘米/秒的速度沿AC向终点C运动;点Q以1.25厘米/秒的速度沿BC向终点C运动.过点P作PE∥BC交AD于点E,连接EQ.设动点运动时间为t秒(t>0).(1)连接DP,经过1秒后,四边形EQDP能够成为平行四边形吗?请说明理由;(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行.为什么?(3)当t为何值时,△EDQ为直角三角形.6.如图,在平面直角坐标系中,四边形OABC是梯形,OA∥BC,点A的坐标为(6,0),点B的坐标为(3,4),点C在y轴的正半轴上.动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒).(1)求线段AB的长;当t为何值时,MN∥OC?(2)设△CMN的面积为S,求S与t之间的函数解析式,并指出自变量t的取值范围;S是否有最小值?若有最小值,最小值是多少? 27.条件:如下图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明).模型应用:(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是;(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.8.如图,四边形OABC是一张放在平面直角坐标系的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=15,OC=9,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作N点.(1)求N点、M点的坐标;(2)将抛物线y=x2﹣36向右平移a(0<a<10)个单位后,得到抛物线l,l经过点N,求抛物线l的解析式;(3)①抛物线l的对称轴上存在点P,使得P点到M、N两点的距离之差最大,求P点的坐标;②若点D是线段OC上的一个动点(不与O、C重合),过点D作DE∥OA交CN于E,设CD的长为m,△PDE的面积为S,求S与m之间的函数关系式,并说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.39.如图,直线y=kx﹣1与x轴、y轴分别交于B、C两点,tan∠OCB=.(1)求B点的坐标和k的值;(2)若点A(x,y)是第一象限内的直线y=kx﹣1上的一个动点.当点A运动过程中,试写出△AOB的面积S与x的函数关系式;(3)探索:在(2)的条件下:①当点A运动到什么位置时,△AOB的面积是;②在①成立的情况下,x轴上是否存在一点P,使△POA是等腰三角形?若存在,请写出满足条件的所有P点的坐标;若不存在,请说明理由.10.(2015•成都)如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐

    上传时间:2023-04-30 页数:14

    401人已阅读

    (5星级)

  • 中考数学冲刺:动手操作与运动变换型问题(基础).doc

    中考冲刺:动手操作与运动变换型问题(基础)一、选择题1. 如图,在Rt△ABC 中,∠C=90° ,AC=BC=6cm,点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPCP为菱形,则t的值为(  )A. B. 2  C. D. 32.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A→B→A的方向运动,设运动时间为t(s)(0≤t<3),连接EF,当△BEF是直角三角形时,t的值为(  )A.  B. 1 C. 或1 D. 或1或   3. (2015•盘锦)如图,边长为1的正方形ABCD,点M从点A出发以每秒1个单位长度的速度向点B运动,点N从点A出发以每秒3个单位长度的速度沿A→D→C→B的路径向点B运动,当一个点到达点B时,另一个点也随之停止运动,设△AMN的面积为s,运动时间为t秒,则能大致反映s与t的函数关系的图象是(). A. B. C. D.1二、填空题4.如图,已知点A(0,2)、B(,2)、C(0,4),过点C向右作平行于x轴的射线,点P是射线上的动点,连结AP以AP为边在其左侧作等边△APQ 连结PB、BA.若四边形ABPQ为梯形,则(1)当AB为梯形的底时,点P的横坐标是 ___;(2)当AB为梯形的腰时,点P的横坐标是 ______. 5.如图,矩形纸片ABCD,AB=2,点E在BC上,且AE=EC.若将纸片沿AE折叠,点B恰好落在AC上,则AC的长是______. 6. (2016•东河区二模)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的是______. 三、解答题7.如图所示是规格为8×8的正方形网格,请在所给网格中,按下列要求操作:2 (1)请在网格中建立平面直角坐标系,使A点坐标为(-2,4),B点坐标为(-4,2);(2)在第二象限内的格点上画一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,则C点的坐标是________,△ABC的周长是________ (结果保留根号);(3)画出△ABC以点C为旋转中心、旋转180°后的△A′B′C,连接AB′和A′B,试说出四边形是何特殊四边形,并说明理由.8. (1)观察与发现小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展平纸片(如图①);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).小明认为△AEF是等腰三角形,你同意吗?请说明理由.(2)实践与运用将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点D′处,折痕为EG(如图④);再展平纸片(如图⑤).求图⑤中∠α的大小. 9. 如图(1),已知△ABC中,AB=BC=1,∠ABC=90°,把一块含30°角的直角三角板DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DE,长直角边为DF),将直角三角形板DEF绕D点按逆时针方向旋转.(1)在图(1)中,DE交AB于M,DF交BC于N.①证明:DM=ND;②在这一旋转过程中,直角三角板DEF与△ABC的重叠部分为四边形DMBN,请说明四边形DMBN的面积是否发生变化?若发生变化,请说明是如何变化的;若不发生变化,求出其面积;(2)继续旋转至如图(2)所示的位置,延长AB交DE于M,延长BC交DF于N,DM=DN是否仍然成立?若成立,请给出证明;若不成立,请说明理由;3(3)继续旋转至如图(3)所示的位置,延长FD交BC于N,延长ED交AB于M,DM=DN是否仍然成立?若成立,请写出结论,不用证明.10. (2016•绵阳)如图,以菱形ABCD对角线交点为坐标原点,建立平面直角坐标系,A、B两点的坐标分别为(﹣2,0)、(0,﹣),直线DE⊥DC交AC于E,动点P从点A出发,以每秒2个单位的速度沿着A→D→C

    上传时间:2023-04-30 页数:11

    350人已阅读

    (5星级)

  • 中考数学冲刺:观察、归纳型问题(基础).doc

    中考冲刺:观察、归纳型问题(基础)一、选择题1. 用边长为1的正方形覆盖3×3的正方形网格,最多覆盖边长为1的正方形网格(覆盖一部分就算覆盖)的个数是(  )  A.2 B.4 C.5 D.62.求1+2+22+23+…+22012的值,可令S=1+2+22+23+…+22012,则2S=2+22+23+24+…+22013,因此,2S-S=22013-1.仿照以上推理,计算出1+5+52+53+…+52012的值为()A.52012-1 B.52013-1  C.  D. 3.(2016•冷水江市三模)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2017秒时,点P的坐标是()A.(2016,0)    B.(2017,1)   C.(2017,﹣1)   D.(2018,0)二、填空题4.(2015•盘锦四模)已知,如图,△OBC中是直角三角形,OB与x轴正半轴重合,∠OBC=90°,且OB=1,BC=,将△OBC绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB1=OC,得到△OB1C1,将△OB1C1绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB2=OC1,得到△OB2C2,…,如此继续下去,得到△OB2015C2015,则点C2015的坐标是______.5.(2016•天门)如图,在平面直角坐标系中,△A1A2A3,△A3A4A5,△A5A6A7,△A7A8A9,…,都是等边三角形,且点A1,A3,A5,A7,A9的1坐标分别为A1(3,0),A3(1,0),A5(4,0),A7(0,0),A9(5,0),依据图形所反映的规律,则A100的坐标为______.6. 如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…Mn分别为边B1B2,B2B3,B3B4,…,BnBn+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△BnCnMn的面积为Sn,则Sn=___________.(用含n的式子表示)三、解答题7.观察下列等式:……请解答下列问题:(1)按以上规律列出第5个等式:a5=______=______;(2)用含有n的代数式表示第n个等式:an=______=______(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.8. 如下表所示,是按一定规律排列的方程组和它的解的对应关系,若方程组自左至右依次记作方程组1、方程组2、方程组3、…、方程组n.(1)将方程组1的解填入表中.2(2)请依据方程组和它的解的变化规律,将方程组n和它的解直接填入表中;   9. 如图所示,是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.将图①倒置后与原图拼成图②的形状,这样我们可以算出图①中所有圆圈的个数为….  如果图①中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图③的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边的这个圆圈中的数是________;(2)我们自上往下,在每个圆圈中都按图④的方式填上一串连续的整数-23,-22,-21,…,求图④中所有圆圈中各数的绝对值之和.10. (余杭区期中)如图,将一张正方形纸片剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去.(1)填表次数12345个数47__________________(2)如果剪了n次,共剪出多少个小正方形?(3)能否经过若干次分割后共得到2014片纸片?若能,请直接写出相应的次数,若3不能,请说明理由.(4)若将所给的正方形纸片剪成若干个小正方形(其大小可以不一样),那么你认为可以将它剪成六个小正方形吗?八个小正方形呢?如果可以,请在下图中画出剪割线的示意图;如果不可以,请简单说明理由. 答案与解析【答案与解析】一、选择题1.【答案】D; 【解析】6个,把边长为1的小正方形的对角线与3乘3网格中的中间正方形任意边重合(其中小正方形的对角 线中点与3乘3网格中的中间正方形边上的中点重合),因为对角线的长为>1,

    上传时间:2023-04-30 页数:7

    387人已阅读

    (5星级)

  • 中考数学冲刺:代数综合问题(提高).doc

    中考冲刺:代数综合问题(提高)一、选择题1. 如图,已知在直角梯形AOBC中,AC∥OB,CB⊥OB,OB=18,BC=12,AC=9,对角线OC、AB交于点D,点E、F、G分别是CD、BD、BC的中点,以O为原点,直线OB为x轴建立平面直角坐标系,则G、E、D、F四个点中与点A在同一反比例函数图象上的是(  ) A.点G B.点E C.点D D.点F2.已知函数y=,若使y=k成立的x值恰好有三个,则k的值为() A.0  B.1  C.2  D.33.(2016秋•重庆校级月考)已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②4ac﹣b2=0;③a>2;④4a﹣2b+c>0.其中正确的个数是()A.1   B.2    C.3    D.4二、填空题4.若a+b-2-4=3- c-5,则a+b+c的值为______.5.已知关于x的方程x2+(k-5)x+9=0在1<x<2内有一实数根,则实数k的取值范围是______.6. (和平区校级期中)关于x的方程,2kx2-2x-3k=0的两根一个大于1,一个小于1,则实数k的的取值范围是______.三、解答题7.(2016•梅州)关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1、x2.(1)求实数k的取值范围.1(2)若方程两实根x1、x2满足x1+x2=﹣x1•x2,求k的值.8. 已知关于的一元二次方程.(1)求证:不论取何值时,方程总有两个不相等的实数根.(2)若直线与函数的图象的一个交点的横坐标为2,求关于的一元二次方程的解.(3)在(2)的条件下,将抛物线绕原点旋转,得到图象,点为轴上的一个动点,过点作轴的垂线,分别与图象、交于两点,当线段的长度最小时,求点的坐标   9. 抛物线,a>0,c<0,.(1)求证:;(2)抛物线经过点,Q.① 判断的符号;② 若抛物线与x轴的两个交点分别为点A,点B(点A在点B左侧),请说明,.10. 已知:二次函数y=.(1)求证:此二次函数与x轴有交点;(2)若m-1=0,求证方程有一个实数根为1;(3)在(2)的条件下,设方程的另一根为a,当x=2时,关于n 的函数与的图象交于点A、B(点A在2点B的左侧),平行于y轴的直线L与、的图象分别交于点C、D,若CD=6,求点C、D的坐标.答案与解析【答案与解析】一、选择题1.【答案】A; 【解析】 在直角梯形AOBC中 ∵AC∥OB,CB⊥OB,OB=18,BC=12,AC=9 ∴点A的坐标为(9,12) ∵点G是BC的中点 ∴点G的坐标是(18,6) ∵9×12=18×6=108 ∴点G与点A在同一反比例函数图象上,故选A.2.【答案】D; 【解析】 函数y=的图象如图: 根据图象知道当y=3时,对应成立的x有恰好有三个,∴k=3.故选D.3.【答案】B; 【解析】①∵抛物线开口朝上,∴a>0. ∵抛物线的对称轴为x=﹣=﹣1,∴b=2a>0. 当x=0时,y=c+2>2,∴c>0.∴abc>0,①错误; ②∵抛物线与x轴只有一个交点, ∴b2﹣4a(c+2)=b2﹣4ac﹣8a=0, ∴b2﹣4ac=8a>0,②错误; ③∵抛物线的顶点为(﹣1,0), ∴抛物线解析式为y=a(x+1)2=ax2+2ax+a=ax2+bx+c+2, ∴a=c+2>2,③正确; ④∵b=2a,c>0, ∴4a﹣2b+c=c>0,④正确. 故选B.二、填空题34.【答案】20; 【解析】整理得:(a-1-2+1)+(b-2-4+4)+(c-3-6+9)=0 (-1)2+(-2)2+(-3)2=0, ∴=1,=2,=3, ∵a≥1,b≥2,c≥3, ∴a=2,b=6,c=12, ∴a+b+c=20. 故答案为: 20.5.【答案】 【解析】利用数形结合的方法将问题转化成二次函数y= x2+(k-5)x+9图象开口向上,与x轴的一个交点的 横坐标在1<x<2内,故有两种情况,分析得出结论.6.【答案】k>0或k<-2. 【解析】设y=2kx2-2x-3k, ∵方程2kx2-2x-3k=0d的两根

    上传时间:2023-04-30 页数:8

    383人已阅读

    (5星级)

  • 中考英语状元笔记珍藏版.pdf

    中考英语状元笔记珍藏版.pdf

    上传时间:2023-04-29 页数:130

    660人已阅读

    (5星级)

  • 中考数学冲刺:代数综合问题--巩固练习(基础).doc

    中考冲刺:代数综合问题—巩固练习(基础)【巩固练习】一、选择题1. 如图所示,已知函数(0)yaxba和y=kx(k≠0)的图象交于点P,则根据图象可得,关于,.yaxbykx的二元一次方程组的解是()A.42xyB.42xyC.42xyD.42xy2.(2016•河北模拟)如图,点A是x轴正半轴上的任意一点,过点A作EF∥y轴,分别交反比例函数和的图象于点E、F,且,连接OE、OF,有下列结论:①这两个函数的图象关于x轴对称;②△EOF的面积为(k1﹣k2);③;④当∠EOF=90°时,,其中正确的是()A.①③ B.②④ C.①④ D.②③3.下列说法中①若式子1x有意义,则x>1.②已知∠α=27°,则∠α的补角是153°.1③已知x=2 是方程x2-6x+c=0 的一个实数根,则c 的值为8.④在反比例函数2kyx中,若x>0 时,y 随x 的增大而增大,则k 的取值范围是k>2. 其中正确的命题有()A. 1 个 B. 2 个C. 3 个D. 4 个二、填空题4.如图所示,是二次函数21yaxbxc(a≠0)和一次函数2ymxn(n≠0)的图象,观察图象写出y2≥y1时,x的取值范围____ ____. 5.已知二次函数22(1)2(1)yxmxm.若此函数图象的顶点在直线y=-4上,则此函数解析式为.6. (2016•历下区二模)已知二次函数y=ax2+bx+c的图象如图所示,有下列5个结论:①abc<0;②4a+2b+c>0;③b2﹣4ac<0;④b>a+c;⑤a+2b+c>0,其中正确的结论有   .三、解答题7.(北京校级期中)已知关于x的一元二次方程mx2﹣(m+1)x+1=0(1)求证:此方程总有两个实数根;(2)若此方程的两个实数根都是整数,求m的整数值;(3)在(2)中开口向上的抛物线y=mx2﹣(m+1)x+1与x轴交于点A,与y轴交于点B,直线y=﹣x上有一个动点P.求使PA+PB取得最小值时的点P的坐标,并求PA+PB的最小值.28. 善于不断改进学习方法的小迪发现,对解题进行回顾反思,学习效果更好.某一天小迪有20分钟时间可用于学习.假设小迪用于解题的时间x(单位:分钟)与学习收益量y的关系如图1所示,用于回顾反思的时间x(单位:分钟)与学习收益y的关系如图2所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.(1)求小迪解题的学习收益量y与用于解题的时间x之间的函数关系式;(2)求小迪回顾反思的学习收益量y与用于回顾反思的时间x的函数关系式;(3)问小迪如何分配解题和回顾反思的时间,才能使这20分钟的学习收益总量最大?9. 已知P(3,m)和Q(1,m)是抛物线221yxbx上的两点.(1)求b的值;(2)判断关于x的一元二次方程221xbx=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线221yxbx的图象向上平移k(k是正整数)个单位,使平移后的图象与x轴无交点,求k的最小值.10. 已知:关于x的一元二次方程04)4(2mxmx,其中40m.(1)求此方程的两个实数根(用含m的代数式表示);3(2)设抛物线cbxxy2与x轴交于A、B两点(A在B的左侧),若点D的坐标为(0,-2),且AD·BD=10,求抛物线的解析式;(3)已知点E(a,1y)、F(2a,y2)、G(3a,y3)都在(2)中的抛物线上,是否存在含有1y、y2、y3,且与a无关的等式?如果存在,试写出一个,并加以证明;如果不存在,说明理由.【答案与解析】一、选择题1.【答案】C;【解析】本题考查方程组的解(数)与直线交点(形)坐标之间的关系.2.【答案】B;【解析】①∵点E在反比例函数的图象上,点F在反比例函数的图象上,且,∴k1=OA•EA,k2=﹣OA•FA,∴,∴这两个函数的图象不关于x轴对称,即①错误;②∵点E在反比例函数y1=的图象上,点F在反比例函数y2=的图象上,∴S△OAE=k1,S△OAF=﹣k2,∴S△OEF=S△OAE+S△OAF=(k1k﹣2),即②正确;③由①可知,∴③错误;④设EA=5a,OA=b,则FA=3a,由勾股定理可知:OE=,OF=.∵∠EOF=90°,∴OE2+OF2=EF2,即25a2+b2+9a2+b2=64a2,∴b2=15a2,4∴=,④正确.综上可知:正

    上传时间:2023-04-30 页数:8

    301人已阅读

    (5星级)

客服

客服QQ:

2505027264


客服电话:

18182295159

微信小程序

微信公众号

回到顶部