免费预览已结束 ,请下载后查看全文
还剩-页可免费阅读, 继续阅读
初中7年级(下册)实数(提高)知识讲解.doc简介:
实数(提高)【学习目标】1. 了解无理数和实数的意义;2. 了解有理数的概念、运算法则在实数范围内仍适用 .【要点梳理】要点一、有理数与无理数有限小数和无限循环小数都称为有理数.无限不循环小数又叫无理数.要点诠释:(1)无理数的特征:无理数的小数部分位数无限.无理数的小数部分不循环,不能表示成分数的形式. (2)常见的无理数有三种形式:①含类.②看似循环而实质不循环的数,如:1.313113111…….③带有根号的数,但根号下的数字开方开不尽,如.要点二、实数有理数和无理数统称为实数.1.实数的分类按定义分:实数按与0的大小关系分:实数 2.实数与数轴上的点一一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.要点三、实数大小的比较对于数轴上的任意两个点,右边的点所表示的实数总是比左边的点表示的实数大.正实数大于0,负实数小于0,两个负数,绝对值大的反而小.要点四、实数的运算有理数关于相反数和绝对值的意义同样适合于实数.当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.在进行实数的运算时,有理数的运算法则及运算性质等同样适用.【典型例题】类型一、实数概念1、把下列各数分别填入相应的集合内:1,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)【答案与解析】有理数有:, ,,,0,无理数有:,,, ,,, 0.3737737773……【总结升华】有限小数和无限循环小数都称为有理数.无限不循环小数又叫无理数.常见的无理数有三种形式:①含类.②看似循环而实质不循环的数,如:0.3737737773……③带有根号的数,但根号下的数字开方开不尽,如,, ,,.举一反三:【变式】判断正误,在后面的括号里对的用 √,错的记×表示,并说明理由.(1)无理数都是开方开不尽的数.()(2)无理数都是无限小数.()(3)无限小数都是无理数.()(4)无理数包括正无理数、零、负无理数.()(5)不带根号的数都是有理数.()(6)带根号的数都是无理数.()(7)有理数都是有限小数.()(8)实数包括有限小数和无限小数.()【答案】(1)(×)无理数不只是开方开不尽的数,还有,1.020 020 002…这类的数也是无理数.(2)(√)无理数是无限不循环小数,是属于无限小数范围内的数.(3)(×)无限小数包括无限循环小数和无限不循环小数两类数,其中无限不循环小数才是无理数.(4)(×)0是有理数.(5)(×)如,虽然不带根号,但它是无限不循环小数,所以是无理数.(6)(×)如,虽然带根号,但=9,这是有理数.(7)(×)有理数还包括无限循环小数.2 …有理数集合 …无理数集合(8)(√)有理数可以用有限小数和无限循环小数表示,无理数是无限不循环小数,所以实数可以用有限小数和无限小数表示.类型二、实数大小的比较2、比较与的大小.【思路点拨】根据,,则来比较两个实数的大小.【答案与解析】解:因为,.所以<【总结升华】实数的比较有多种方法,除了上述方法外,还有作差法、作商法、同分子法、倒数法等.举一反三:【变式】(2015•自贡)若两个连续整数x、y满足x<+1<y,则x+y的值是 .【答案】7.解:∵,∴,∵x<+1<y,∴x=3,y=4,∴x+y=3+4=7.类型三、实数的运算3、求的值.【答案与解析】解:(1)当≥0时,,,所以.(2)当<0时,,,所以.即值为0或2.【总结升华】本题是涉及平方根(算术平方根)和立方根的综合运算,但还应注意本题需要分类讨论.要注意对的讨论,而开立方不需要讨论符号.举一反三:【变式】若的两个平方根是方程的一组解. (1)求的值;3 (2)求的算术平方根.【答案】解:(1)∵的平方根是的一组解,则设的平方根为,,则根据题意得:解得∴为. (2)∵.∴的算术平方根为4.类型四、实数的综合运用4、已知,且,求的值.【答案与解析】解:∵,且,.∴,即,.解得=3,=5,得=64.∴.【总结升华】本题考查非负性与立方、立方根的综合运用,由,可求、,又,所以=64,则可求.举一反三:【变式】已知,求的值.【答案】解:知条件得,由②得,,∵,∴,则.把代入①得,=1.4∴.5、(2015秋•萧山区期中)如图,半径为1个单位的圆片上有一点Q与数轴上的原点重合(提示:圆的周长C=2πr)(1)把圆片沿数轴向左滚动1周,点Q到达数轴上点A
展开>>
下载声明:
1、本文档共5页,其中可免费阅读5页,下载后可查看全部内容。
2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
3、本文档由用户上传,本站不保证内容质量和数量令您满意,可能有诸多瑕疵,付费之前,请先通过免费阅读内容等途径仔细辨别内容交易风险。 如存在严重文不对题之情形,可联系本站下载客服投诉处理。
文档侵权举报电话:18182295159 (电话支持时间:10:00-19:00)。
展开>>
扫码快捷下载 | 账号登录下载
客服
客服QQ:
2505027264
客服电话:
18182295159
微信小程序
微信公众号
回到顶部