免费预览已结束 ,请下载后查看全文
还剩-页可免费阅读, 继续阅读
初中8年级(上册)作轴对称图形知识讲解 .doc简介:
作轴对称图形 知识讲解【学习目标】1.理解轴对称变换,能作出已知图形关于某条直线的对称图形.2.能利用轴对称变换,设计一些图案,解决简单的实际问题.3.运用所学的轴对称知识,认识和掌握在平面直角坐标系中,与已知点关于x轴或y轴对称点的坐标的规律,进而能在平面直角坐标系中作出与一个图形关于x轴或y轴对称的图形.4.能运用轴对称的性质,解决简单的数学问题或实际问题,提高分析问题和解决问题的能力.【要点梳理】要点一、对称轴的作法若两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线.因此只要找到一对对应点,再作出连接它们的线段的垂直平分线就可以得到这两个图形的对称轴轴对称图形的对称轴作法相同.要点诠释:在轴对称图形和成轴对称的两个图形中,对应线段、对应角相等.成轴对称的两个图形,如果它们的对应线段或延长线相交,那么交点一定在对称轴上.如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称.要点二、 用坐标表示轴对称1.关于x轴对称的两个点的横(纵)坐标的关系 已知P点坐标,则它关于x轴的对称点的坐标为,如下图所示: 即关于x轴的对称的两点,坐标的关系是:横坐标相同,纵坐标互为相反数.2.关于y轴对称的两个点横(纵)坐标的关系 已知P点坐标为,则它关于y轴对称点的坐标为,如上图所示. 即关于y轴对称的两点坐标关系是:纵坐标相同,横坐标互为相反数.3.关于与x轴(y轴)平行的直线对称的两个点横(纵)坐标的关系 P点坐标关于直线的对称点的坐标为. P点坐标关于直线的对称点的坐标为.【典型例题】类型一、作轴对称图形11、(2016•临夏州)如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.【思路点拨】(1)直接利用关于x轴对称点的性质得出各对应点位置进而得出答案;(2)直接利用平移的性质得出各对应点位置进而得出答案.【答案与解析】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,点A2(﹣3,﹣1),B2(0,﹣2),C2(﹣2,﹣4).【总结升华】此题主要考查了轴对称变换和平移变换,根据题意得出对应点位置是解题关键.举一反三:【变式】在下图中,画出△ABC关于直线MN的对称图形.【答案】△'''ABC为所求.2类型二、轴对称变换的应用(将军饮马问题)2、如图所示,如果将军从马棚M出发,先赶到河OA上的某一位置P,再马上赶到河OB上的某一位置Q,然后立即返回校场N.请为将军重新设计一条路线(即选择点P和Q),使得总路程MP+PQ+QN最短.【思路点拨】通过轴对称变换,将MP转化为MP,QN转化为QN,要使总路程MP+PQ+QN最短,就是指MP+PQ+QN最短,而这三条线段在一条直线上的时候最短.【答案与解析】见下图作点M关于OA的对称点M,作点N关于OB的对称点N,连接MN交OA于P、交OB于Q,则M→P→Q→N为最短路线.【总结升华】本题主要是通过作对称点的方法得出结论,并利用了对称线段相等,三角形两边之和大于第三边的性质推得所作的图形符合条件,这是道综合性的应用问题.举一反三:【变式】(2014秋•花垣县期末)茅坪民族中学八(2)班举行文艺晚会,桌子摆成两直条(如图中的AO,BO),AO桌面上摆满了桔子,OB桌面上摆满了糖果,站在C处的学生小明先拿桔子再拿糖果,然后回到C处,请你在下图帮助他设计一条行走路线,使其所走的总路程最短?3【答案】解:①分别作点C关于OA、OB的对称点是M、N,②连接MN,分别交OA于D,OB于E.则C→D→E→C为所求的行走路线.3、将军要检阅一队士兵,要求(如图所示):队伍长为a,沿河OB排开(从点P到点Q);将军从马棚M出发到达队头P,从P至Q检阅队伍后再赶到校场N.请问:在什么位置列队(即选择点P和Q),可以使得将军走的总路程MP+PQ+QN最短?【答案与解析】见下图作法:作N关于OB的对称点N,再作NN∥BO且NN=a(N在N的左侧);连接MN交OB于点P,再在OB上取点Q使得PQ=a(Q在P的右侧),此时,MP+PQ+QN最小.4【总结升华】MP+PQ+QN最小,其中PQ是定值a,问题转化为MP+QN最小.因为将军要沿河走一段线段a,如果能把这段a提前走掉就可以转化为熟悉的问题了,于是考虑从'N沿平行的方向走a至''N,连接''MN即可.类型三、用坐标表示轴对称4、(2014秋•江津区期中)已知点A(2a﹣b,5+a),B(2b﹣1,﹣a+b).(1)若点A、B关
展开>>
下载声明:
1、本文档共5页,其中可免费阅读5页,下载后可查看全部内容。
2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
3、本文档由用户上传,本站不保证内容质量和数量令您满意,可能有诸多瑕疵,付费之前,请先通过免费阅读内容等途径仔细辨别内容交易风险。 如存在严重文不对题之情形,可联系本站下载客服投诉处理。
文档侵权举报电话:18182295159 (电话支持时间:10:00-19:00)。
展开>>
扫码快捷下载 | 账号登录下载
客服
客服QQ:
2505027264
客服电话:
18182295159
微信小程序
微信公众号
回到顶部