免费预览已结束 ,请下载后查看全文
还剩-页可免费阅读, 继续阅读
中考数学冲刺:数形结合问题--知识讲解(基础).doc简介:
中考冲刺:数形结合问题—知识讲解(基础)【中考展望】1.用数形结合的思想解题可分两类: (1)利用几何图形的直观性表示数的问题,它常借用数轴、函数图象等;(2)运用数量关系来研究几何图形问题,常常要建立方程(组)或建立函数关系式等.2. 热点内容:在初中教材中,数的常见表现形式为: 实数、代数式、函数和不等式等,而形的常见表现形式为: 直线型、角、三角形、四边形、多边形、圆、抛物线、相似、勾股定理等.在直角坐标系下,一次函数图象对应一条直线,二次函数的图像对应着一条抛物线,这些都是初中数学的重要内容.【方法点拨】数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含以形助数和以数解形两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长,是优化解题过程的重要途径之一,是一种基本的数学方法.数形结合解题基本思路:数和形是数学中两个最基本的概念, 每一个几何图形中都蕴含着与它们的形状、大小、位置密切相关的数量关系;反之,数量关系又常常可以通过几何图形做出直观地反映和描述.数形结合的实质就是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,在解决代数问题时,想到它的图形,从而启发思维,找到解题之路;或者在研究图形时,利用代数的知识,解决几何的问题.实现了抽象概念与具体图形的联系和转化,化难为易,化抽象为直观. 特别是二次函数,不仅是学生学习的难点之一,同时也使数形结合的思想方法在中学数学中得到最充分体现.在平面直角坐标系中,二次函数图象的开口方向、顶点坐标、对称轴以及与坐标轴的交点等都与其系数a,b,c密不可分.事实上,a的符号决定抛物线的开口方向,b与a 一起决定抛物线的对称轴的位置, c 决定了抛物线与y 轴的交点位置,与a、b 一起决定抛物线顶点坐标的纵坐标,抛物线图形的平移,只是顶点坐标发生变化,其实从代数的角度看是b、c 的有关变化.在日常的数学学习中应注意养成数形相依的观念,有意识培养数形结合思想,形成数形统一意识,提高解题能力.数缺形时少直观,形缺数时难入微.总之,要把数形结合思想贯穿在数学学习中.数与形及其相互关系是数学研究的基本内容.【典型例题】类型一、利用数形结合探究数字的变化规律1. 如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是 . 【思路点拨】首先计算几个特殊图形,发现:数出每边上的个数,乘以边数,但各个顶点的重复了一次,应再减去.第1个图形是2×3-3,第2个图形是3×4-4,第3个图形是4×5-5,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)-(n+2)=n2+2n.【答案与解析】第1个图形是三角形,有3条边,每条边上有2个点,重复了3个点,需要黑色棋(2×3-3)个;1第2个图形是四边形,有4条边,每条边上有3个点,重复了4个点,需要黑色棋子(3×4-4)个; 第3个图形是五边形,有5条边,每条边上有4个点,重复了5个点,需要黑色棋子(4×5-5)个; 按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)-(n+2)=n(n+2). 故答案为n(n+2)=n2+2n.【总结升华】这样的试题从最简单的图形入手.找出图形中黑点的个数与第n个图形之间的关系,找规律需要列出算式,一律采用原题中的数据,不要用到计算出来的结果来找规律.举一反三:【变式】用棋子按下列方式摆图形,依照此规律,第n个图形比第(n-1)个图形多_____枚棋子.【答案】解:设第n个图形的棋子数为.第1个图形,S1=1;第2个图形,S2=1+4;第3个图形,S3=1+4+7;第n个图形,Sn=1+4+…+3n-2;第(n-1)个图形,Sn-1=1+4+…+[3(n-1)-2];则第n个图形比第(n-1)个图形多(3n-2)枚棋子.类型二、 利用数形结合解决数与式的问题 2.已知实数a、b、c在数轴上的位置如图所示,化简|a+b|-|c-b|的结果是 ().0acbA.a+c B.-a-2b+cC.a+2b-cD.-a-c【思路点拨】首先从数轴上a、b、c的位置关系可知:c<a<0;b>0且|b|>|a|,接着可得a+b>0,c-b<0,然后即可化简|a+b|-|c-b|可得结果. 具体步骤为:① a,b,c的具体位置,在原点左边的小于0,原点右边的大于0.②比较绝对值的大小.|a|<|c|<|b|.③化简原式中的每一部分,看看绝对值内部(二次根式中的被开方数的底数)的性质,若大于零,直接提出来,若小于零,则取原数的相反数.④进行化简计算,得出最后结果.【答案与解析
展开>>
下载声明:
1、本文档共8页,其中可免费阅读5页,下载后可查看全部内容。
2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
3、本文档由用户上传,本站不保证内容质量和数量令您满意,可能有诸多瑕疵,付费之前,请先通过免费阅读内容等途径仔细辨别内容交易风险。 如存在严重文不对题之情形,可联系本站下载客服投诉处理。
文档侵权举报电话:18182295159 (电话支持时间:10:00-19:00)。
展开>>
扫码快捷下载 | 账号登录下载
客服
客服QQ:
2505027264
客服电话:
18182295159
微信小程序
微信公众号
回到顶部