免费预览已结束 ,请下载后查看全文
还剩-页可免费阅读, 继续阅读
中考数学总复习:图形的变化--巩固练习(提高).doc简介:
中考总复习:图形的变换--巩固练习(提高)【巩固练习】一、选择题1.有下列四个说法,其中正确说法的个数是()①图形旋转时,位置保持不变的点只有旋转中心;②图形旋转时,图形上的每一个点都绕着旋转中心旋转了相同的角度;③图形旋转时,对应点与旋转中心的距离相等;④图形旋转时,对应线段相等,对应角相等,图形的形状和大小都没有发生变化.A. 1个B.2个 C. 3个D.4个2.在旋转过程中,确定一个三角形旋转的位置所需的条件是(). ①三角形原来的位置;②旋转中心;③三角形的形状;④旋转角.A.①②④ B.①②③ C.②③④D.①③④3.(2017•大连模拟)如图,折叠直角三角形ABC纸片,使两锐角顶点A、C重合,设折痕为DE.若AB=4,BC=3,则BD的值是()A. B.1 C. D.4.如图是一个旋转对称图形,要使它旋转后与自身重合,至少应将它绕中心逆时针方向旋转的度数为().A、30° B、60° C、120° D、180°5.如图,把矩形纸条ABCD沿EFGH,同时折叠,BC,两点恰好落在AD边的P点处,若90FPH∠,8PF,6PH,则矩形ABCD的边BC长为().A.20B.22C.24D.30 第4题第5题6.如图,正方形硬纸片ABCD的边长是4,点E、F分别是AB、BC的中点,若沿左图中的虚线剪开,拼成如下图的一座小别墅,则图中阴影部分的面积是().A.2B.4C.8D.101二、填空题7.(2017·郑州一模)如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC上一动点,连结AD,将△ADC沿AD折叠,点C落在点C,连结CD交AB于点E,连结BC.当△BCD是直角三角形时,DE的长为 .8.在RtABC中,∠A<∠B,CM是斜边AB上的中线,将ACM沿直线CM折叠,点A落在点D处,如果CD恰好与AB垂直,那么∠A等于度. 第7题第8题9.在RtABC△中,903BACABM°,,为边BC上的点,连结AM(如图所示).如果将ABM△沿直线AM翻折后,点B恰好落在边AC的中点处,那么点M到AC的距离是 .10.如图,在ABC中,MN//AC,直线MN将ABC分割成面积相等的两部分,将BMN沿直线MN翻折,点B恰好落在点E处,联结AE,若AE//CN,则AE:NC= . 第9题第10题11.(2016•闸北区一模)如图,将一张矩形纸片ABCD沿着过点A的折痕翻折,使点B落在AD边上的点F,折痕交BC于点E,将折叠后的纸片再次沿着另一条过点A的折痕翻折,点E恰好与点D重合,此时折痕交DC于点G,则CG:GD的值为 .212.如图,在计算机屏幕上有一个矩形画刷ABCD,它的边AB=l,.把ABCD以点B为中心按顺时针方向旋转60°,则被这个画刷着色的面积为________.三、解答题13. 如图(1)所示,一张三角形纸片ABC,6,8,90BCACACB.沿斜边AB的中线CD把这线纸片剪成11DAC和22DBC两个三角形如图(2)所示.将纸片11DAC沿直线BD2(AB)方向平移(点BDDA,,,21始终在同一条直线上),当点1D与点B重合时,停止平移,在平移的过程中,11DC与2BC交于点E,1AC与222,BCDC分别交于点F,P.(1)当11DAC平移到如图(3)所示的位置时,猜想图中ED1与FD2的数量关系,并证明你的猜想.(2)设平移距离12,DD为x,11DAC与22DBC重叠部分的面积为y,请写出y与x的函数关系式,以及自变量x的取值范围;(3)对于(2)中的结论是否存在这样的x,使得重叠部分面积等于原ABC纸片面积的41?若存在,请求出x的值;若不存在,请说明理由.3 14.(2015•河南)如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D、E分别是边BC、AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,=;②当α=180°时,=.(2)拓展探究试判断:当0°≤α<360
展开>>
下载声明:
1、本文档共12页,其中可免费阅读5页,下载后可查看全部内容。
2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
3、本文档由用户上传,本站不保证内容质量和数量令您满意,可能有诸多瑕疵,付费之前,请先通过免费阅读内容等途径仔细辨别内容交易风险。 如存在严重文不对题之情形,可联系本站下载客服投诉处理。
文档侵权举报电话:18182295159 (电话支持时间:10:00-19:00)。
展开>>
扫码快捷下载 | 账号登录下载
客服
客服QQ:
2505027264
客服电话:
18182295159
微信小程序
微信公众号
回到顶部