下载(8积分)

精品解析:2022年北京市高考数学试题(解析版).docx

上传人:久***** IP属地:- 文档编号:cna4dmfsik1hoe5r1vng 上传时间:2024-02-20 格式:docx 页数:18页 大小:950.38Kb 点击收藏 https://wenkeju.com/service-article/12我要举报 版权申诉
下载(8积分)

免费预览已结束 ,请下载后查看全文

下载(8积分)

还剩-页可免费阅读, 继续阅读

精品解析:2022年北京市高考数学试题(解析版).docx简介:
绝密★本科目考试启用前2022年普通高等学校招生全国统一考试(北京卷)数学本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知全集,集合,则()A. B. C. D.【答案】D【解析】【分析】利用补集的定义可得正确的选项.【详解】由补集定义可知:或,即,故选:D.2. 若复数z满足,则()A. 1B. 5C. 7D. 25【答案】B【解析】【分析】利用复数四则运算,先求出,再计算复数的模.【详解】由题意有,故.故选:B.3. 若直线是圆的一条对称轴,则()A. B. C. 1D. 【答案】A【解析】【分析】若直线是圆的对称轴,则直线过圆心,将圆心代入直线计算求解.【详解】由题可知圆心为,因为直线是圆的对称轴,所以圆心在直线上,即,解得.故选:A.4. 己知函数,则对任意实数x,有()A. B. C. D. 【答案】C【解析】【分析】直接代入计算,注意通分不要计算错误.【详解】,故A错误,C正确;,不是常数,故BD错误;故选:C.5. 已知函数,则()A. 在上单调递减B. 在上单调递增C. 在上单调递减D. 在上单调递增【答案】C【解析】【分析】化简得出,利用余弦型函数的单调性逐项判断可得出合适的选项.【详解】因为.对于A选项,当时,,则在上单调递增,A错;对于B选项,当时,,则在上不单调,B错;对于C选项,当时,,则在上单调递减,C对;对于D选项,当时,,则在上不单调,D错.故选:C.6. 设是公差不为0的无穷等差数列,则为递增数列是存在正整数,当时,的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】【分析】设等差数列的公差为,则,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论.【详解】设等差数列的公差为,则,记为不超过的最大整数.若为单调递增数列,则,若,则当时,;若,则,由可得,取,则当时,,所以,是递增数列存在正整数,当时,;若存在正整数,当时,,取且,,假设,令可得,且,当时,,与题设矛盾,假设不成立,则,即数列是递增数列.所以,是递增数列存在正整数,当时,.所以,是递增数列是存在正整数,当时,的充分必要条件.故选:C.7. 在北京冬奥会上,国家速滑馆冰丝带使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奥作出了贡献.如图描述了一定条件下二氧化碳所处的状态与T和的关系,其中T表示温度,单位是K;P表示压强,单位是.下列结论中正确的是()A. 当,时,二氧化碳处于液态B. 当,时,二氧化碳处于气态C. 当,时,二氧化碳处于超临界状态D. 当,时,二氧化碳处于超临界状态【答案】D【解析】【分析】根据与的关系图可得正确的选项.【详解】当,时,,此时二氧化碳处于固态,故A错误.当,时,,此时二氧化碳处于液态,故B错误.当,时,与4非常接近,故此时二氧化碳处于固态,另一方面,时对应的是非超临界状态,故C错误.当,时,因, 故此时二氧化碳处于超临界状态,故D正确.故选:D8. 若,则()A. 40B. 41C. D. 【答案】B【解析】【分析】利用赋值法可求的值.【详解】令,则,令,则,故,故选:B.9. 已知正三棱锥的六条棱长均为6,S是及其内部的点构成的集合.设集合,则T表示的区域的面积为()A. B. C. D. 【答案】B【解析】【分析】求出以为球心,5为半径的球与底面的截面圆的半径后可求区域的面积.【详解】设顶点在底面上的投影为,连接,则为三角形的中心,且,故.因为,故,故的轨迹为以为圆心,1为半径的圆,而三角形内切圆的圆心为,半径为,故的轨迹圆在三角形内部,故其面积为故选:B10. 在中,.P为所在平面内的动点,且,则的取值范围是()A. B. C. D. 【答案】D【解析】【分析】依题意建立平面直角坐标系,设,表示出,,根据数量积的坐标表示、辅助角公式及正弦函数的性质计算可得;【详解】解:依题意如图建立平面直角坐标系,则,,,因为,所以在以为圆心,为半径的圆上运动,设,,所以,,所以,其中,,因为,所以,即;故选:D第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11. 函数的定义域是_________.【答案】【解析】【分析】根据偶次方根的被开方数非负、分母不为零得到方程组,解得即可;【详解】解:因为,所以,解得且,故函数的定义域为;故答案为:12. 已知双曲线的渐近线方程为,则_ 展开>>

下载声明:
1、本文档共18页,其中可免费阅读3页,下载后可查看全部内容。 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。 3、本文档由用户上传,本站不保证内容质量和数量令您满意,可能有诸多瑕疵,付费之前,请先通过免费阅读内容等途径仔细辨别内容交易风险。 如存在严重文不对题之情形,可联系本站下载客服投诉处理。 文档侵权举报电话:18182295159 (电话支持时间:10:00-19:00)。 展开>>

扫码快捷下载 |

精品解析:2022年北京市高考数学试题(解析版).docx

大小:950.38Kb 页数:18页 格式:docx 下载积分:8 积分

下载须知

01.使用微信/支付宝扫码注册及付费下载详阅 用户协议隐私政策

02.付费购买成功后,【未登录】用户可使用微信/支付宝扫码登录 登录后免费再下载

03.扫码过程中请勿刷新、关闭本页面,否则会导 致文档资源下载失败

04.如需使用账号登录下载或微信登录下载,请点击 账号登录下载

05.一经购买,不支持退款,请谨慎购买

微信/支付宝扫码支付下载

二维码已失效

点击刷新

还需支付元(1元=1积分)

下载支付:8 积分

您已下载过该文档,可以再次免费下载

客服

客服QQ:

2505027264


客服电话:

18182295159

微信小程序

微信公众号

回到顶部