下载(2积分)

初中8年级(下册)勾股定理全章复习与巩固(提高)知识讲解.doc

上传人:青***** IP属地:乌鲁木齐 文档编号:ch6uvnvsik1h341q0rtg 上传时间:2023-04-30 格式:doc 页数:9页 大小:360.00Kb 点击收藏 https://wenkeju.com/service-article/12我要举报 版权申诉
下载(2积分)

免费预览已结束 ,请下载后查看全文

下载(2积分)

还剩-页可免费阅读, 继续阅读

初中8年级(下册)勾股定理全章复习与巩固(提高)知识讲解.doc简介:
勾股定理全章复习与巩固(提高)【学习目标】1.了解勾股定理的历史,掌握勾股定理的证明方法;2.理解并掌握勾股定理及逆定理的内容;3.能应用勾股定理及逆定理解决有关的实际问题.【知识网络】【要点梳理】要点一、勾股定理1.勾股定理:直角三角形两直角边ab、的平方和等于斜边c的平方.(即:222abc) 2.勾股定理的应用 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:(1)已知直角三角形的两边,求第三边;(2)利用勾股定理可以证明有关线段平方关系的问题;(3)求作长度为的线段.要点二、勾股定理的逆定理1.原命题与逆命题如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.2.勾股定理的逆定理 勾股定理的逆定理:如果三角形的三边长abc、、,满足222abc,那么这个三角形是直角三角形.应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤:(1)首先确定最大边,不妨设最大边长为c;(2)验证2c与22ab是否具有相等关系,若222abc,则△ABC是以∠C为直角的直角三角形,反之,则不是直角三角形. 3.勾股数满足不定方程222xyz的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以xyz、、为三边长的三角形一定是直角三角形.常见的勾股数:①3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41.如果(abc、、)是勾股数,当t为正整数时,以atbtct、、为三角形的三边长,此三1角形必为直角三角形.观察上面的①、②、④、⑤四组勾股数,它们具有以下特征:1.较小的直角边为连续奇数;2.较长的直角边与对应斜边相差1.3.假设三个数分别为abc、、,且abc,那么存在2abc成立.(例如④中存在27=24+25、29=40+41等)要点三、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关.【典型例题】类型一、勾股定理及逆定理的应用1、如图所示,直角梯形ABCD中,AD∥BC,∠B=90°,AD=35,AB=105,BC85,E是AB上一点,且AE=45,求点E到CD的距离EF.【思路点拨】连接DE、CE将EF转化为△DCE一边CD上的高,根据题目所给的条件,容易求出△CDE的面积,所以利用面积法只需求出CD的长度,即可求出EF的长度,过点D作DH⊥BC于H,在Rt△DCH中利用勾股定理即可求出DC.【答案与解析】解:过点D作DH⊥BC于H,连接DE、CE,则AD=BH,AB=DH,∴CH=BC-BH=853555DH=AB=105,在Rt△CDH中,22222(105)(55)625CDDHCH,∴CD=25,∵CDEADEBCEABCDSSSS△△△梯形111()222ADBCABADAEBCBE111(3585)10535458565125222又∵ 12CDESDCEF△,2∴1251252EF,∴EF=10.【总结升华】(1)多边形的面积可通过辅助线转化为多个三角形的面积,利用面积法求三角形一边上的高是一种常用的简易方法.(2)利用勾股定理求边长、面积时要注意边长、面积之间的转换. 举一反三:【变式】如图所示,在△ABC中,D是BC边上的点,已知AB=13,AD=12,AC=15,BD=5,求DC的长.【答案】解:在△ABD中,由22212513可知:222ADBDAB,又由勾股定理的逆定理知∠ADB=90°.在Rt△ADC中,222215129DCACAD.类型二、勾股定理与其他知识结合应用2、如图所示,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC=400米,BD=200米,CD=800米,牧童从A处把牛牵到河边饮水后再回家.试问在何处饮水,所走路程最短?最短路程是多少?【思路点拨】作点A关于直线CD的对称点G,连接GB,交CD于点E,利用两点之间线段最短可知应在E处饮水,再根据对称性知GB的长为所走的最短路程,然后构造直角三角形,利用勾股定理可解决.【答案与解析】解:作点A关于直线CD的对称点G,连接GB交CD于点E,由两点之间线段最短可以知道在E点处饮水,所走路程最短.说明如下:3在直线CD上任意取一异于点E的点I,连接AI、AE、BE、BI、GI、GE.∵点G、A关于直线CD对称,∴AI=GI,AE=GE.由两点之间线段最 展开>>

下载声明:
1、本文档共9页,其中可免费阅读5页,下载后可查看全部内容。 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。 3、本文档由用户上传,本站不保证内容质量和数量令您满意,可能有诸多瑕疵,付费之前,请先通过免费阅读内容等途径仔细辨别内容交易风险。 如存在严重文不对题之情形,可联系本站下载客服投诉处理。 文档侵权举报电话:18182295159 (电话支持时间:10:00-19:00)。 展开>>

扫码快捷下载 |

初中8年级(下册)勾股定理全章复习与巩固(提高)知识讲解.doc

大小:360.00Kb 页数:9页 格式:doc 下载积分:2 积分

下载须知

01.使用微信/支付宝扫码注册及付费下载详阅 用户协议隐私政策

02.付费购买成功后,【未登录】用户可使用微信/支付宝扫码登录 登录后免费再下载

03.扫码过程中请勿刷新、关闭本页面,否则会导 致文档资源下载失败

04.如需使用账号登录下载或微信登录下载,请点击 账号登录下载

05.一经购买,不支持退款,请谨慎购买

微信/支付宝扫码支付下载

二维码已失效

点击刷新

还需支付元(1元=1积分)

下载支付:2 积分

您已下载过该文档,可以再次免费下载

客服

客服QQ:

2505027264


客服电话:

18182295159

微信小程序

微信公众号

回到顶部