免费预览已结束 ,请下载后查看全文
还剩-页可免费阅读, 继续阅读
初中数学9年级锐角三角函数—知识讲解.doc简介:
锐角三角函数—知识讲解【学习目标】1.结合图形理解记忆锐角三角函数定义;2.会推算30°、45°、60°角的三角函数值,并熟练准确的记住特殊角的三角函数值;3.理解并能熟练运用同角三角函数的关系及锐角三角函数值随角度变化的规律.【要点梳理】要点一、锐角三角函数的概念如图所示,在Rt△ABC中,∠C=90°,∠A所对的边BC记为a,叫做∠A的对边,也叫做∠B的邻边,∠B所对的边AC记为b,叫做∠B的对边,也是∠A的邻边,直角C所对的边AB记为c,叫做斜边. 锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即;锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,即;锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即.同理;;.要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化.(2)sinA,cosA,tanA分别是一个完整的数学符号,是一个整体,不能写成,, ,不能理解成sin与∠A,cos与∠A,tan与∠A的乘积.书写时习惯上省略∠A的角的记号∠,但对三个大写字母表示成的角(如∠AEF),其正切应写成tan∠AEF,不能写成 tanAEF;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的定义知:当角度在0°<∠A<90°间变化时,,,tanA>0.1ABCabc要点二、特殊角的三角函数值 利用三角函数的定义,可求出30°、45°、60°角的各三角函数值,归纳如下:锐角30°45°160°要点诠释:(1)通过该表可以方便地知道30°、45°、60°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现: 、、的值依次为、、,而、、的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为: ①正弦、正切值随锐角度数的增大(或减小)而增大(或减小); ②余弦值随锐角度数的增大(或减小)而减小(或增大).要点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.2【典型例题】类型一、锐角三角函数值的求解策略 INCLUDEPICTURE"https://resource.etiantian.com/ett20/resource/99b01980a53a49c1ecacbfc2256cb47b/images/mb04_080317.gif" \* MERGEFORMATINET 1.(2016•安顺)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2B.C.D.【思路点拨】根据勾股定理,可得AC、AB的长,根据正切函数的定义,可得答案.【答案】D.【解析】解:如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan∠B==,故选:D.【总结升华】本题考查了锐角三角函数的定义,先求出AC、AB的长,再求正切函数.举一反三:锐角三角函数395948例1(1)-(2)【变式】在RtΔABC中,∠C=90°,若a=3,b=4,则c=,sinA=, cosA=,sinB=, cosB=.3ABCabc【答案】c= 5 ,sinA=, cosA=,sinB=, cosB=.类型二、特殊角的三角函数值的计算2.求下列各式的值: (1)(2015•茂名校级一模) 6tan230°﹣sin60°2sin45°﹣; (2)(2015•乐陵市模拟) sin60°4cos﹣230°+sin45°•tan60°; (3)(2015•宝山区一模) +tan60°﹣. 【答案与解析】解:(1)原式==.(2) 原式=×4×﹣()2+×=3+﹣=;(3) 原式=+﹣=2+﹣=32﹣+2=.【总结升华】熟记特殊角的三角函数值或借助两个三角板推算三角函数值,先代入特殊角的三角函数值,再进行化简.举一反三:锐角三角函数395948例1(3)-(4)【变式】在RtΔABC中,∠C=90°,若∠A=45°,则∠B=, sinA=, co
展开>>
下载声明:
1、本文档共7页,其中可免费阅读5页,下载后可查看全部内容。
2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
3、本文档由用户上传,本站不保证内容质量和数量令您满意,可能有诸多瑕疵,付费之前,请先通过免费阅读内容等途径仔细辨别内容交易风险。 如存在严重文不对题之情形,可联系本站下载客服投诉处理。
文档侵权举报电话:18182295159 (电话支持时间:10:00-19:00)。
展开>>
扫码快捷下载 | 账号登录下载
客服
客服QQ:
2505027264
客服电话:
18182295159
微信小程序
微信公众号
回到顶部