免费预览已结束 ,请下载后查看全文
还剩-页可免费阅读, 继续阅读
2020年北京市高考文科数学试卷(含解析版).doc简介:
绝密★本科目考试启用前2020年普通高等学校招生全国统一考试(北京卷)数学本试卷共5页,150分,考试时长120分钟.考试务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合,,则().A. B. C. D. 【答案】D【解析】【分析】根据交集定义直接得结果.【详解】,故选:D.【点睛】本题考查集合交集概念,考查基本分析求解能力,属基础题.2.在复平面内,复数对应的点的坐标是,则().A. B. C. D. 【答案】B【解析】【分析】先根据复数几何意义得,再根据复数乘法法则得结果.【详解】由题意得,.故选:B.【点睛】本题考查复数几何意义以及复数乘法法则,考查基本分析求解能力,属基础题.3.在的展开式中,的系数为().A. B. 5C. D. 10【答案】C【解析】【分析】首先写出展开式的通项公式,然后结合通项公式确定的系数即可.【详解】展开式的通项公式为:,令可得:,则的系数为:.故选:C.【点睛】二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.4.某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为().A. B. C. D.【答案】D【解析】【分析】首先确定几何体的结构特征,然后求解其表面积即可.【详解】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:.故选:D.【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.5.已知半径为1的圆经过点,则其圆心到原点的距离的最小值为().A. 4B. 5C. 6D. 7【答案】A【解析】【分析】求出圆心的轨迹方程后,根据圆心到原点的距离减去半径1可得答案.【详解】设圆心,则,化简得,所以圆心的轨迹是以为圆心,1为半径的圆,所以,所以,当且仅当在线段上时取得等号,故选:A.【点睛】本题考查了圆的标准方程,属于基础题.6.已知函数,则不等式的解集是().A. B. C. D. 【答案】D【解析】【分析】作出函数和的图象,观察图象可得结果.【详解】因为,所以等价于,在同一直角坐标系中作出和的图象如图:两函数图象的交点坐标为,不等式的解为或.所以不等式的解集为:.故选:D.【点睛】本题考查了图象法解不等式,属于基础题.7.设抛物线的顶点为,焦点为,准线为.是抛物线上异于的一点,过作于,则线段的垂直平分线().A. 经过点B. 经过点C. 平行于直线D. 垂直于直线【答案】B【解析】【分析】依据题意不妨作出焦点在轴上的开口向右的抛物线,根据垂直平分线的定义和抛物线的定义可知,线段的垂直平分线经过点,即求解.【详解】如图所示:.因为线段的垂直平分线上的点到的距离相等,又点在抛物线上,根据定义可知,,所以线段的垂直平分线经过点.故选:B.【点睛】本题主要考查抛物线的定义的应用,属于基础题.8.在等差数列中,,.记,则数列( ).A. 有最大项,有最小项B. 有最大项,无最小项C. 无最大项,有最小项D. 无最大项,无最小项【答案】B【解析】【分析】首先求得数列的通项公式,然后结合数列中各个项数的符号和大小即可确定数列中是否存在最大项和最小项.【详解】由题意可知,等差数列的公差,则其通项公式为:,注意到,且由可知,由可知数列不存在最小项,由于,故数列中的正项只有有限项:,.故数列中存在最大项,且最大项为.故选:B.【点睛】本题主要考查等差数列的通项公式,等差数列中项的符号问题,分类讨论的数学思想等知识,属于中等题.9.已知,则存在使得是的().A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】【分析】根据充分条件,必要条件的定义,以及诱导公式分类讨论即可判断.【详解】(1)当存在使得时,若为偶数,则;若为奇数,则;(2)当时,或,,即或,亦即存在使得.所以,存在使得是的充要条件.故选:C.【点睛】本题主要考查充分条件,必要条件的定义的应用,诱导公式的
展开>>
下载声明:
1、本文档共26页,其中可免费阅读3页,下载后可查看全部内容。
2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
3、本文档由用户上传,本站不保证内容质量和数量令您满意,可能有诸多瑕疵,付费之前,请先通过免费阅读内容等途径仔细辨别内容交易风险。 如存在严重文不对题之情形,可联系本站下载客服投诉处理。
文档侵权举报电话:18182295159 (电话支持时间:10:00-19:00)。
展开>>
扫码快捷下载 | 账号登录下载
客服
客服QQ:
2505027264
客服电话:
18182295159
微信小程序
微信公众号
回到顶部