免费预览已结束 ,请下载后查看全文
还剩-页可免费阅读, 继续阅读
2021年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版).doc简介:
2021年普通高等学校招生全国统一考试(全国乙卷)数学(理)一、选择题1.设,则( )A.B.C.D.答案:C解析:设,则,,所以,,所以.2.已知集合,,则( )A.B.C.D.答案:C解析:,;当,时,;当,时,.所以,.故选C.3.已知命题﹐;命题,则下列命题中为真命题的是()A.B.C.D.答案:A解析:根据正弦函数的值域,故,,为真命题,而函数为偶函数,且时,,故,恒成立.,则也为真命题,所以为真,选A.4.设函数,则下列函数中为奇函数的是( )A.B.C.D.答案:B解析:,向右平移一个单位,向上平移一个单位得到2()gxx为奇函数.5.在正方体中,为的中点,则直线与所成的角为()A.B.C.D.答案:D解析:如图,为直线与所成角的平面角.易知为正三角形,又为中点,所以.6.将名北京冬奥会志愿者分配到花样滑冰,短道速滑、冰球和冰壶个项目进行培训,每名志愿者只分配到个项目,每个项目至少分配名志愿者,则不同的分配方案共有()A.种B.种C.种D.种答案:C解析:所求分配方案数为.7.把函数图像上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度,得到函数的图像,则( )A.B.C.D.答案:B解析:逆向:.故选B.8.在区间与中各随机取个数,则两数之和大于的概率为( )A.B.C.D.答案:B解析:由题意记,,题目即求的概率,绘图如下所示.故.9.魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作.其中第一题是测量海岛的高.如图,点在水平线上,和是两个垂直于水平面且等高的测量标杆的高度,称为表高,称为表距,和都称为表目距.与的差称为表目距的差,则海岛的高( )A.B.C.D.答案:A解析:连接交于,则.记,,则.而,.所以.故,所以高.10.设,若为函数的极大值点,则A.B.C.D.答案:D解析:若,其图像如图(1),此时,;若,时图像如图(2),此时,.综上,.11.设是椭圆:的上顶点,若上的任意一点都满足,,则的离心率的取值范围是( )A.B.C.D.答案:C解析:由题意,点,设,则,故,.由题意,当时,最大,则,,,,.12.设,,,则( )A.B.C.D.答案:B解析:设,则,易得.当时,,故.所以在上单调递减,所以,故.再设,则,易得.当时,,所以在上.故在上单调递增,所以,故.综上,.二、填空题13.已知双曲线:的一条渐近线为,则的焦距为.答案:解析:易知双曲线渐近线方程为,由题意得,,且一条渐近线方程为,则有(舍去),,故焦距为.14.已知向量,,若,则.答案:解析:由题意得,即,解得.15.记的内角,,的对边分别为,,,面积为, ,,则.答案:解析:,所以,由余弦定理,,所以.16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为(写出符合要求的一组答案即可).答案:②⑤或③④解析:由高度可知,侧视图只能为②或③.侧视图为②,如图(1),平面平面,,,,俯视图为⑤.俯视图为③,如图(2),平面,,,,俯视图为④.三、解答题17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了件产品,得到产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为和, 样本方差分别己为和.(1)求,,,:(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高 ( 如果,则认为新设备生产产品的该项指标的均值较旧设备有显著提高 , 否则不认为有显著提高 ) 。答案:见解析解析:(1)各项所求值如下所示.,,,.(2)由(1)中数据得.显然.所以不认为新设备生产产品的该项指标的均值较旧设备有显著提高。18.如图,四棱锥的底面是矩形,底面,,为的中点,且.(1)求;(2)求二面角的正弦值.答案:见解析解析:(1)因为平面,且矩形中,.所以以,,分别为,,轴正方向,为原点建立空间直角坐标系.设,,,,,所以,因为,所以所以,所以.(2)设平面的一个法向量为,由于,则.令,的.设平面的一个法向量为,则.令,的.所以,所以二面角的正弦值为.19.记为数列的前项和,为数列的前项积,已知.(1)证明:数列是等差数列;(2)求的通项公式.答案:见解析解析:(1)由已知,则,,,故是以为首项,为公差的等差数列.(2)由(1)知,则,时,,时,,故.20.设函数,已知是函数的极值点.(1)求;(2)设函数,证明:.答案:见解析解析:(1)令则.∵是函数的极值点.∴.解得:;(2)由(1)可知: ,要证,即证(且).∵当时,.当时,
展开>>
下载声明:
1、本文档共18页,其中可免费阅读3页,下载后可查看全部内容。
2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
3、本文档由用户上传,本站不保证内容质量和数量令您满意,可能有诸多瑕疵,付费之前,请先通过免费阅读内容等途径仔细辨别内容交易风险。 如存在严重文不对题之情形,可联系本站下载客服投诉处理。
文档侵权举报电话:18182295159 (电话支持时间:10:00-19:00)。
展开>>
扫码快捷下载 | 账号登录下载
2021年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版).doc
大小:1.18Mb 页数:18页 格式:doc 下载积分:8 积分
微信/支付宝扫码支付下载
二维码已失效
点击刷新
还需支付元(1元=1积分)
下载支付:8 积分
您已下载过该文档,可以再次免费下载
客服
客服QQ:
2505027264
客服电话:
18182295159
微信小程序
微信公众号
回到顶部