免费预览已结束 ,请下载后查看全文
还剩-页可免费阅读, 继续阅读
俄罗斯数学Xovratovich2003ru.pdf简介:
МосковскийГосударственныйУниверситетимениМ.В.ЛомоносоваФакультетВычислительнойМатематикииКибернетикиУРАВНЕНИЯМАТЕМАТИЧЕСКОЙФИЗИКИ.КОНСПЕКТЛЕКЦИЙ(Vсеместр)составитель—Д.В.Ховрат´овичv.1.00FinalRelease—19.02.200311Классификацияуравненийсчастнымипроизводнымивторогопо-рядкаОпределение.ПустьвпространствеE2задананекотораяфункцияu(x,y),имеющаячастныепроизводныевто-рогопорядка(причемuxy=uyx).Тогдаобщимуравнениемвчастныхпроизводныхназываетсяуравнение:F(x,y,u,ux,uy,uyy,uxx,uxy)=0,гдеF–некотораяфункция.Егочастнымслучаемявляетсятакназываемоеквазилинейноеуравнение:a11(x,y,u,ux,uy)uxx+2a12(x,y,u,ux,uy)uxy+a22(x,y,u,ux,uy)uyy+F1(x,y,u,ux,uy)=0.Насбудутинтересоватьуравнения,линейныеотносительностаршихпроизводных,тоесть,когдафунк-цииa11,a12,a22зависяттолькоотпеременныхx,y:a11(x,y)uxx+2a12(x,y)uxy+a22(x,y)uyy+F(x,y,u,ux,uy)=0.Уравнениеназываетсялинейным,еслионолинейнокакотносительностаршихпроизводныхuxx,uyy,uxy,такиотносительнофункцииuиеепервыхпроизводных:a11uxx+2a12uxy+a22uyy+b1ux+b2uy+cu+f=0,(1.1)гдеa11,a12,a22,b1,b2,c,f–функциитолькоотxиy.Определение.Еслиf≡0,тоуравнение(1.1)называетсяоднородным,впротивномслучае–неоднород-ным.Определение.Уравнение(1.1)имеетвточке(x0,y0)1.гиперболическийтип,еслиa212(x0,y0)−a11(x0,y0)a22(x0,y0)>0;2.эллиптическийтип,еслиa212(x0,y0)−a11(x0,y0)a22(x0,y0)<0;3.параболическийтип,еслиa212(x0,y0)−a11(x0,y0)a22(x0,y0)=0.Аналогичноопределяетсятипуравнениядлянекоторойобласти:уравнение(1.1)имеетвобластигиперболиче-ский(эллиптический)[параболический]тип,еслиa212(x,y)−a11(x,y)a22(x,y)>0(<0)[=0]вовсехточкахэтойобласти.Еслиуравнениеимеетразныйтипвразличныхточкахобласти,тоононазываетсяуравнениемсмешанноготипавэтойобласти.22Уравненияпараболическоготипа2.1ВыводуравнениятеплопроводностивпространствеРассмотримвтрехмерномпространственекотороетело,проводящеетепло,ипустьтемпературавегопроиз-вольнойточкеMскоординатами(x,y,z)вмоментвремениtзадаетсяфункциейu(x,y,z,t).Известно,чтодлявекторатепловогопотока−→Wсправедливаследующаяформула,называемаязакономФурье:−→W=−kgradu,гдеk(x,y
展开>>
下载声明:
1、本文档共64页,其中可免费阅读10页,下载后可查看全部内容。
2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
3、本文档由用户上传,本站不保证内容质量和数量令您满意,可能有诸多瑕疵,付费之前,请先通过免费阅读内容等途径仔细辨别内容交易风险。 如存在严重文不对题之情形,可联系本站下载客服投诉处理。
文档侵权举报电话:18182295159 (电话支持时间:10:00-19:00)。
展开>>
扫码快捷下载 | 账号登录下载
客服
客服QQ:
2505027264
客服电话:
18182295159
微信小程序
微信公众号
回到顶部