下载(2积分)

初中8年级(上册)等边三角形(提高)知识讲解.doc

上传人:青***** IP属地:乌鲁木齐 文档编号:ch6uv77sik1h341q0pqg 上传时间:2023-04-30 格式:doc 页数:6页 大小:240.00Kb 点击收藏 https://wenkeju.com/service-article/12我要举报 版权申诉
下载(2积分)

免费预览已结束 ,请下载后查看全文

下载(2积分)

还剩-页可免费阅读, 继续阅读

初中8年级(上册)等边三角形(提高)知识讲解.doc简介:
等边三角形(提高)【学习目标】1. 掌握等边三角形的性质和判定.2. 掌握含30°角的直角三角形的一个主要性质.3. 熟练运用等边三角形的判定定理与性质定理进行推理和计算.【要点梳理】要点一、等边三角形等边三角形定义:三边都相等的三角形叫等边三角形.要点诠释:由定义可知,等边三角形是一种特殊的等腰三角形.也就是说等腰三角形包括等边三角形.要点二、等边三角形的性质等边三角形的性质:等边三角形三个内角都相等,并且每一个内角都等于60°.要点三、等边三角形的判定等边三角形的判定:(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.要点四、含30°的直角三角形含30°的直角三角形的性质定理:在直角三角形中,如果有一个锐角是30°,那么它所对的直角边等于斜边的一半. 要点诠释:这个定理的前提条件是在直角三角形中,是证明直角三角形中一边等于另一边(斜边)的一半的重要方法之一,通常用于证明边的倍数关系.【典型例题】类型一、等边三角形1、(2015秋·黄冈期中)如图,已知点B、C、D在同一条直线上,ABC和DCE都是等边三角形,BE交AC于F,AD交CE于H.(1)求证:△BCE≌△ACD;(2)求证:FH∥BD.【答案与解析】(1)证明:ABC和DCE都是等边三角形 ∴BC=AC,CE=CD,∠BCA=∠ECD=60° ∴∠BCA+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD在△BCE和△ACD中1 ∴△BCE≌△ACD(SAS)(2)由(1)知△BCE≌△ACD则∠CBF=∠CAH,BC=AC又∵ABC和DCE都是等边三角形,且点B、C、D在同一条直线上,∴∠ACH=180°-∠ACB-∠HCD=60°=∠BCF,在△BCF和△ACH中 ∴△BCF≌△ACH(ASA)∴CF=CH,又∵∠FCH=60°∴△CHF是等边三角形∴∠FHC=∠HCD=60°,∴FH∥BD【总结升华】本题考查等边三角形的判定与性质及全等三角形的判定与性质,熟知全等三角形的判定定理是解答此题的关键。举一反三:【变式】(2014秋•利通区校级期末)如图,△ABD,△ACE都是正三角形,BE和CD交于O点,则∠BOC=   度.【答案】120°.解:∵△ABD,△ACE都是正三角形∴AD=AB,∠DAB=EAC=60°∠,AC=AE,∴∠DAC=EAB∠∴△DACBAE≌△(SAS)∴DC=BE,∠ADC=ABE∠,∠AEB=ACD∠,∴∠BOC=CDB+DBE∠∠=CDB+DBA+ABE∠∠∠=ADC+CDB+DBA∠∠∠=120°.2、如图,△ABC为等边三角形,延长BC到D,延长BA到E,使AE=BD,连接CE、DE. 求证:CE=DE.2EDCBA【思路点拨】此题如果直接找含有CE和DE的三角形找不到,也不方便证∠ECD=∠EDC,联想的全等三角形的性质,把原等边△ABC扩展成大等边△BEF后,易证△EBC≌△EFD.【答案与解析】证明:延长BD至F,使DF=AB,连接EF∵△ABC为等边三角形∴AB=BC, ∠B=60º∵AE=BD,DF=AB∴AE+AB=BD+DF即BE=BF∴△BEF为等边三角形∴BE=EF, ∠F=60º在△EBC与△EFD中DFBCFBEFEB∴△EBC≌△EFD∴EC=ED【总结升华】本题主要考查了等边三角形的性质,全等三角形的判定,关键是在现有图形不能解决问题时,将原图补全成为有对称美感的等边三角形,对学生综合运用知识解答问题的能力要求较高.举一反三:【变式】如图所示,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN.试探究线段CN、BM、MN之间的关系,并加以证明.【答案】对于此类题,三条线段之间的关系一般是它们的和差关系,证明方法通常采用截长补短法. 3FEDCBA证明:如图所示,延长AC至M1,使CM1=BM,连接DM1.∵△ABC是正三角形,∴∠ABC=∠ACB=60°.∵∠BDC=120°,且BD=CD,∴∠DBC=∠DCB=30°.∴∠ABD=∠ACD=90°.又∵BD=CD,BM=CM1,∴Rt△BDM≌Rt△CDM1(SAS).∴DM=DM1,∠BDM=∠CDM1,∴∠MDM1=∠MDC+∠CDM1=∠MDC+∠BDM=∠BDC=120°.又∵∠MDN=60°.∴∠M1DN=∠MDN=60°.又∵DM=DM1,DN=DN,∴△MD 展开>>

下载声明:
1、本文档共6页,其中可免费阅读5页,下载后可查看全部内容。 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。 3、本文档由用户上传,本站不保证内容质量和数量令您满意,可能有诸多瑕疵,付费之前,请先通过免费阅读内容等途径仔细辨别内容交易风险。 如存在严重文不对题之情形,可联系本站下载客服投诉处理。 文档侵权举报电话:18182295159 (电话支持时间:10:00-19:00)。 展开>>

扫码快捷下载 |

初中8年级(上册)等边三角形(提高)知识讲解.doc

大小:240.00Kb 页数:6页 格式:doc 下载积分:2 积分

下载须知

01.使用微信/支付宝扫码注册及付费下载详阅 用户协议隐私政策

02.付费购买成功后,【未登录】用户可使用微信/支付宝扫码登录 登录后免费再下载

03.扫码过程中请勿刷新、关闭本页面,否则会导 致文档资源下载失败

04.如需使用账号登录下载或微信登录下载,请点击 账号登录下载

05.一经购买,不支持退款,请谨慎购买

微信/支付宝扫码支付下载

二维码已失效

点击刷新

还需支付元(1元=1积分)

下载支付:2 积分

您已下载过该文档,可以再次免费下载

客服

客服QQ:

2505027264


客服电话:

18182295159

微信小程序

微信公众号

回到顶部