免费预览已结束 ,请下载后查看全文
还剩-页可免费阅读, 继续阅读
初中数学9年级反比例函数(提高)巩固练习.doc简介:
【巩固练习】一.选择题1. 在反比例函数12myx的图象上有两点A11,xy,B22,xy,当120xx时,有12yy,则m的取值范围是( ) A.0m B.0m C.12m D.12m2. 如图所示的图象上的函数关系式只能是( ) .A. B.C. D.3. 已知,点P()在反比例函数的图像上,则直线不经过的象限是( ).A. 第一象限B. 第二象限 C. 第三象限D. 第四象限 4. 在函数(为常数)的图象上有三个点,,,则函数值、、的大小关系是().A.<<B.<<C.<<D.<<5. (2015•历下区模拟)如图,直线x=t(t>0)与反比例函数y=(x>0)、y=(x>0)的图象分别交于B、C两点,A为y轴上任意一点,△ABC的面积为3,则k的值为( )A.2B.3C.4D.516. (2016•本溪)如图,点A、C为反比例函数y=图象上的点,过点A、C分别作AB⊥x轴,CD⊥x轴,垂足分别为B、D,连接OA、AC、OC,线段OC交AB于点E,点E恰好为OC的中点,当△AEC的面积为时,k的值为()A.4B.6C.﹣4D.﹣6二.填空题7. 如图所示是三个反比例函数、、的图象,由此观察得到、、的大小关系是____________________(用<连接).8. 如图,矩形ABCD的边AB与y轴平行,顶点A的坐标为(1,2),点B与点D在反比例函数(>0)的图象上,则点C的坐标为 _________ .9. (2014春•江都市校级期末)已知y1与x成正比例(比例系数为k1),y2与x成反比例(比例系数为k2),若函数y=y1+y2的图象经过点(1,2),(2,),则8k1+5k2的值为.10.已知A(),B()都在 图象上.若,则的值为 _________ .211. 如图,正比例函数的图象与反比例函数(>0)的图象交于点A,若取1,2,3…20,对应的Rt△AOB的面积分别为,则= ________.12. 如图所示,点,,在x轴上,且,分别过点,,作轴的平行线,与反比例函数=(>0)的图象分别交于点,,,分别过点,,作轴的平行线,分别于轴交于点,,,连接,,,那么图中阴影部分的面积之和为____________.三.解答题13. (2016•泉州)已知反比例函数的图象经过点P(2,﹣3).(1)求该函数的解析式;(2)若将点P沿x轴负方向平移3个单位,再沿y轴方向平移n(n>0)个单位得到点P′,使点P′恰好在该函数的图象上,求n的值和点P沿y轴平移的方向.14. 如图所示,已知双曲线与直线相交于A、B两点.第一象限上的点M(,)(在A点左侧)是双曲线上的动点.过点B作BD∥轴交于x轴于点D.过N(0,-)作NC∥轴交双曲线于点E,交BD于点C.(1)若点D坐标是(-8,0),求A、B两点坐标及的值.(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.315. (2015春•耒阳市校级月考)如图,已知点A(﹣8,n),B(3,﹣8)是一次函数y=kx+b的图象和反比例函数图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积,(3)求方程kx+b﹣=0的解(请直接写出答案);(4)求不等式kx+b﹣>0的解集(请直接写出答案).【答案与解析】一.选择题1.【答案】C;【解析】由题意画出图象,只能在一、三象限,故.2.【答案】D;【解析】画出的图象,再把轴下方的图象翻折上去.3.【答案】C;【解析】由题意,故>0,直线经过一、二、四象限.4.【答案】D;【解析】,故图象在二、四象限,画出图象,比较大小得D答案.5.【答案】D;【解析】解:由题意得,点C的坐标(t,﹣),点B的坐标(t,),BC=+,则(+)×t=3,解得k=5,故选:D.6.【答案】C.【解析】设点C的坐标为(m,),则点E(m,),A(m,),4∵S△AEC=BD•AE=(m﹣m)•(﹣)=﹣k=,∴k=﹣4.二.填空题7. 【答案】;8. 【答案】(3,6);【解析】由题意B点的坐标为(1,6),D点的坐标为(3,2),因为ABCD是矩形,故C点的坐标为(3,6).9.【答案】9;【解析】设y1=k1x,y2=,则y=y1+y2=k1x+,将(1,2)、(2,)代入得:,解得:∴8k1+5k2==9.故答案为9.10.【答案】-12;【解析】由题意所以,因为,所以=-12.11.【答案】105;【解析】△AOB的面积始终为,故=.1
展开>>
下载声明:
1、本文档共7页,其中可免费阅读5页,下载后可查看全部内容。
2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
3、本文档由用户上传,本站不保证内容质量和数量令您满意,可能有诸多瑕疵,付费之前,请先通过免费阅读内容等途径仔细辨别内容交易风险。 如存在严重文不对题之情形,可联系本站下载客服投诉处理。
文档侵权举报电话:18182295159 (电话支持时间:10:00-19:00)。
展开>>
扫码快捷下载 | 账号登录下载
客服
客服QQ:
2505027264
客服电话:
18182295159
微信小程序
微信公众号
回到顶部