免费预览已结束 ,请下载后查看全文
还剩-页可免费阅读, 继续阅读
2017年高考理科数学试题(天津卷)及参考答案.doc简介:
2017年普通高等学校招生全国统一考试天津数学(理工类)ⅠⅡ本试卷分为第卷(选择题)和第卷(非选择题)两部分,共150分,考试用时120Ⅰ分钟。第卷1至2Ⅱ页,第卷3至5页。答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。考试结束后,将本试卷和答题卡一并交回。祝各位考生考试顺利!Ⅰ第卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。2.本卷共8小题,每小题5分,共40分。参考公式:·如果事件 A,B 互斥,那么·如果事件 A,B 相互独立,那么P(A∪B)=P(A)+P(B).P(AB)=P(A) P(B).·棱柱的体积公式V=Sh. ·球的体积公式.其中S表示棱柱的底面面积, 其中表示球的半径.h表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合,则(A) (B)(C)(D)(2)设变量满足约束条件则目标函数的最大值为(A) (B)1(C) (D)3(3)阅读右面的程序框图,运行相应的程序,若输入的值为24,则输出的值为(A)0 (B)1(C)2(D)3(4)设,则是的(A)充分而不必要条件 (B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件(5)已知双曲线的左焦点为,离心率为.若经过和两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(A) (B)(C)(D)(6)已知奇函数在R上是增函数,.若,,,则a,b,c的大小关系为(A)(B)(C)(D)(7)设函数,,其中,.若,且的最小正周期大于,则(A),(B),(C),(D),(8)已知函数设,若关于x的不等式在R上恒成立,则a的取值范围是(A)(B)(C)(D)Ⅱ第卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。2.本卷共12小题,共110分。二. 填空题:本大题共6小题,每小题5分,共30分.(9)已知,i为虚数单位,若为实数,则a的值为 .(10)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .(11)在极坐标系中,直线与圆的公共点的个数为___________.(12)若,,则的最小值为___________.(13)在中,,,.若,,且,则的值为___________.(14)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.(用数字作答)三. 解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)在中,内角所对的边分别为.已知,,.(Ⅰ)求和的值;(Ⅱ)求的值.16.(本小题满分13分)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为.(Ⅰ)设表示一辆车从甲地到乙地遇到红灯的个数,求随机变量的分布列和数学期望;(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.(17)(本小题满分13分)如图,在三棱锥P-ABC中,PA⊥底面ABC,.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.Ⅰ()求证:MN∥平面BDE;Ⅱ()求二面角C-EM-N的正弦值;Ⅲ()已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.18.(本小题满分13分)已知为等差数列,前n项和为,是首项为2的等比数列,且公比大于0,,,.(Ⅰ)求和的通项公式;(Ⅱ)求数列的前n项和.(19)(本小题满分14分)设椭圆的左焦点为,右顶点为,离心率为.已知是抛物线的焦点,到抛物线的准线的距离为.(I)求椭圆的方程和抛物线的方程;(II)设上两点,关于轴对称,直线与椭圆相交于点(异于点),直线与轴相交于点.若的面积为,求直线的方程.(20)(本小题满分14分)设,已知定义在R上的函数在区间内有一个零点,为的导函数.Ⅰ()求的单调区间;(Ⅱ)设,函数,求证:;(Ⅲ)求证:存在大于0的常数,使得对于任意的正整数,且满足.天津理数答案1-4BDCA5-8BCAA 9.−2;10. ;11.2;12.4 ;13. ;14.1080 15.Ⅰ()解:在中,因为,故由,可得.由已知及余弦定理,有,所以.由正弦定理,得.所以,的值为,的值为.ⅡⅠ()解:由()及,得,所以,.故.16.Ⅰ()解:随机变量的所有可能取值为0,1,2,3.,,,.所以,随机变量的分布列为
展开>>
下载声明:
1、本文档共15页,其中可免费阅读3页,下载后可查看全部内容。
2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
3、本文档由用户上传,本站不保证内容质量和数量令您满意,可能有诸多瑕疵,付费之前,请先通过免费阅读内容等途径仔细辨别内容交易风险。 如存在严重文不对题之情形,可联系本站下载客服投诉处理。
文档侵权举报电话:18182295159 (电话支持时间:10:00-19:00)。
展开>>
扫码快捷下载 | 账号登录下载
客服
客服QQ:
2505027264
客服电话:
18182295159
微信小程序
微信公众号
回到顶部